論文の概要: A Divide et Impera Approach for 3D Shape Reconstruction from Multiple
Views
- arxiv url: http://arxiv.org/abs/2011.08534v2
- Date: Wed, 18 Nov 2020 09:16:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 16:57:14.520059
- Title: A Divide et Impera Approach for 3D Shape Reconstruction from Multiple
Views
- Title(参考訳): 複数視点からの3次元形状再構成のための分割とインペラアプローチ
- Authors: Riccardo Spezialetti, David Joseph Tan, Alessio Tonioni, Keisuke
Tateno, Federico Tombari
- Abstract要約: 物体の3次元形状を1つまたは複数の画像から推定することは、最近のディープラーニングによるブレークスルーによって人気を集めている。
本稿では,与えられた視点からの可視情報を統合することで,視点変化の再構築に頼ることを提案する。
提案手法を検証するために,相対的なポーズ推定と3次元形状再構成の観点から,ShapeNet参照ベンチマークの総合評価を行った。
- 参考スコア(独自算出の注目度): 49.03830902235915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the 3D shape of an object from a single or multiple images has
gained popularity thanks to the recent breakthroughs powered by deep learning.
Most approaches regress the full object shape in a canonical pose, possibly
extrapolating the occluded parts based on the learned priors. However, their
viewpoint invariant technique often discards the unique structures visible from
the input images. In contrast, this paper proposes to rely on viewpoint variant
reconstructions by merging the visible information from the given views. Our
approach is divided into three steps. Starting from the sparse views of the
object, we first align them into a common coordinate system by estimating the
relative pose between all the pairs. Then, inspired by the traditional voxel
carving, we generate an occupancy grid of the object taken from the silhouette
on the images and their relative poses. Finally, we refine the initial
reconstruction to build a clean 3D model which preserves the details from each
viewpoint. To validate the proposed method, we perform a comprehensive
evaluation on the ShapeNet reference benchmark in terms of relative pose
estimation and 3D shape reconstruction.
- Abstract(参考訳): ディープラーニングによる最近のブレークスルーによって、物体の3d形状を単一の画像や複数の画像から推定する手法が人気を集めている。
ほとんどのアプローチは、標準的なポーズで完全なオブジェクトの形状を後退させ、おそらくは学習された事前に基づいて隠蔽された部分を外挿する。
しかし、その視点不変技術は入力画像から見えるユニークな構造を捨てることが多い。
対照的に、本稿では、与えられたビューから可視情報をマージすることで、視点変化の再構築を頼りにすることを提案する。
我々のアプローチは3つのステップに分けられる。
オブジェクトのスパースビューから始めて、すべてのペア間の相対的なポーズを推定することにより、それらを共通の座標系に整列する。
そして、伝統的なボクセル彫刻に触発されて、画像のシルエットとそれらの相対的なポーズから取られた物体の占有グリッドを生成します。
最後に,初期復元を洗練し,各視点から細部を保存したクリーンな3dモデルを構築した。
提案手法を検証するために,相対的なポーズ推定と3次元形状再構成の観点から,ShapeNet参照ベンチマークの総合評価を行った。
関連論文リスト
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
本研究の目的は,手動物体のインタラクションを単一視点画像から再構築することである。
まず、手ポーズとオブジェクト形状を推定する新しいパイプラインを設計する。
最初の再構築では、事前に誘導された最適化方式を採用する。
論文 参考訳(メタデータ) (2024-11-21T16:33:35Z) - SAOR: Single-View Articulated Object Reconstruction [17.2716639564414]
野生で撮影された単一画像から3次元形状, テクスチャ, 視点を推定するための新しいアプローチであるSAORを紹介する。
事前に定義されたカテゴリ固有の3Dテンプレートや調整された3Dスケルトンに依存する従来のアプローチとは異なり、SAORは3Dオブジェクトの形状を事前に必要とせずに、スケルトンフリーのパーツベースモデルで単一ビューイメージコレクションから形状を明瞭化することを学ぶ。
論文 参考訳(メタデータ) (2023-03-23T17:59:35Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
1枚の画像から被写体の3次元表面を再構築することは難しい問題である。
本稿では,1枚の画像から3次元合成とオブジェクトポーズ推定を行う新しい手法を提案する。
提案手法は,複数の実世界のデータセットにまたがって,最先端の再構築性能を実現する。
論文 参考訳(メタデータ) (2023-02-24T20:37:27Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
本研究では,3次元人間のポーズを正確に再構築し,単一画像から詳細な3次元フルボディ幾何モデルをリアルタイムに構築する手法を提案する。
このアプローチの鍵となるアイデアは、単一のイメージを使用して5つの出力を同時に予測する、新しいエンドツーエンドのマルチタスクディープラーニングフレームワークである。
本研究では,3次元人体フロンティアを進化させ,定量的評価と最先端手法との比較により,単一画像からの再構築を図っている。
論文 参考訳(メタデータ) (2021-06-22T04:26:11Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
単一のRGB画像から複数の3Dオブジェクトを検出し再構成する方法を提案する。
キーポイント検出器は、オブジェクトを中心点としてローカライズし、9-DoF境界ボックスや3D形状を含む全てのオブジェクト特性を直接予測する。
提示されたアプローチは、軽量な再構築を単一ステージで実行し、リアルタイム能力を持ち、完全に微分可能で、エンドツーエンドのトレーナーブルである。
論文 参考訳(メタデータ) (2020-12-21T18:52:21Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z) - Novel Object Viewpoint Estimation through Reconstruction Alignment [45.16865218423492]
我々は、新しい対象の視点を推定するために再構成と整合性アプローチを学ぶ。
具体的には、2つのネットワークを学習することを提案する。最初の1つは3次元幾何学的特徴ボトルネックに画像をマッピングし、画像から画像への変換損失を学習する。
テスト時に、我々のモデルは、テスト画像のボトルネック特徴と参照画像とを最もよく一致させる相対変換を見つけます。
論文 参考訳(メタデータ) (2020-06-05T17:58:14Z) - Reconstruct, Rasterize and Backprop: Dense shape and pose estimation
from a single image [14.9851111159799]
本稿では,1枚の画像から6-DoFポーズとともに高密度物体再構成を行うシステムを提案する。
我々は、カメラフレームの3D再構成でループを閉じるために、差別化可能なレンダリング(特にロボティクス)の最近の進歩を活用している。
論文 参考訳(メタデータ) (2020-04-25T20:53:43Z) - Self-supervised Single-view 3D Reconstruction via Semantic Consistency [142.71430568330172]
対象物の形状, テクスチャ, カメラポーズを予測できる, 自己監督型, 単視点3D再構成モデルを学習する。
提案手法では,手動で注釈付けしたキーポイント,オブジェクトのマルチビューイメージ,あるいは事前の3Dテンプレートなど,3Dの監督を必要としない。
論文 参考訳(メタデータ) (2020-03-13T20:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。