論文の概要: A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
- arxiv url: http://arxiv.org/abs/2401.09257v2
- Date: Wed, 10 Jul 2024 08:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:49:49.301479
- Title: A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
- Title(参考訳): 多目的二レベル最適化のための一階多重勾配アルゴリズム
- Authors: Feiyang Ye, Baijiong Lin, Xiaofeng Cao, Yu Zhang, Ivor Tsang,
- Abstract要約: マルチオブジェクト・バイ・レベル最適化(MOBLO)問題について検討する。
既存の勾配に基づくMOBLOアルゴリズムはヘッセン行列を計算する必要がある。
FORUMと呼ばれるMOBLOの高効率な1次多重勾配法を提案する。
- 参考スコア(独自算出の注目度): 7.097069899573992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the Multi-Objective Bi-Level Optimization (MOBLO) problem, where the upper-level subproblem is a multi-objective optimization problem and the lower-level subproblem is for scalar optimization. Existing gradient-based MOBLO algorithms need to compute the Hessian matrix, causing the computational inefficient problem. To address this, we propose an efficient first-order multi-gradient method for MOBLO, called FORUM. Specifically, we reformulate MOBLO problems as a constrained multi-objective optimization (MOO) problem via the value-function approach. Then we propose a novel multi-gradient aggregation method to solve the challenging constrained MOO problem. Theoretically, we provide the complexity analysis to show the efficiency of the proposed method and a non-asymptotic convergence result. Empirically, extensive experiments demonstrate the effectiveness and efficiency of the proposed FORUM method in different learning problems. In particular, it achieves state-of-the-art performance on three multi-task learning benchmark datasets. The code is available at https://github.com/Baijiong-Lin/FORUM.
- Abstract(参考訳): 本稿では,上層サブプロブレムが多目的最適化問題であり,下層サブプロブレムがスカラー最適化問題であるMOBLO(Multi-Objective Bi-Level Optimization)問題について検討する。
既存の勾配に基づくMOBLOアルゴリズムはヘッセン行列を計算する必要があり、計算不効率な問題を引き起こす。
そこで本研究では,FOUMと呼ばれるMOBLOの高効率な1次多段階化手法を提案する。
具体的には,MOBLO問題を値関数法による制約付き多目的最適化(MOO)問題として再構成する。
そこで本研究では,制約の厳しいMOO問題を解くために,新しい多段階集約手法を提案する。
理論的には、提案手法の効率と非漸近収束結果を示す複雑さ解析を提供する。
実験的に、異なる学習問題において提案手法の有効性と効率を実証した。
特に、3つのマルチタスク学習ベンチマークデータセットで最先端のパフォーマンスを実現する。
コードはhttps://github.com/Baijiong-Lin/FORUMで公開されている。
関連論文リスト
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
現実の問題は、本質的には複数の最適値からなるマルチモーダルである。
古典的な勾配に基づく手法は、目的関数が不連続あるいは微分不可能な最適化問題に対して失敗する。
我々は,MMOPを解くために,拡張オポポジション微分進化(EODE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:18:27Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Multi-Objective Meta Learning [2.9932638148627104]
統合グラデーションベースのマルチ目的メタラーニング(MOML)フレームワークを提案する。
提案されたMOMLフレームワークの有効性をいくつかのメタラーニング問題で示す。
論文 参考訳(メタデータ) (2021-02-14T10:23:09Z) - Meta-learning based Alternating Minimization Algorithm for Non-convex
Optimization [9.774392581946108]
複数変数の非プロブレムに挑戦する新しい解を提案する。
提案手法では,他の手法が一般的に失敗するケースに対して,効果的なイテレーションを実現することができる。
論文 参考訳(メタデータ) (2020-09-09T10:45:00Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
複数の異なる損失を最小化しなければならない最適化問題を考える。
提案手法は、各イテレーションにおける降下方向を計算し、目的関数の相対的減少を等しく保証する。
論文 参考訳(メタデータ) (2020-07-14T09:50:33Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
本稿では,多目的最適化問題を解くための多目的深部強化学習法を提案する。
本手法では,各サブプロブレムをアテンションモデルにより解き,入力ノードの構造的特徴とノード的特徴を活用できる。
論文 参考訳(メタデータ) (2020-02-13T12:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。