論文の概要: Neural Contractive Dynamical Systems
- arxiv url: http://arxiv.org/abs/2401.09352v1
- Date: Wed, 17 Jan 2024 17:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 15:14:18.447085
- Title: Neural Contractive Dynamical Systems
- Title(参考訳): 神経収縮力学系
- Authors: Hadi Beik-Mohammadi, S{\o}ren Hauberg, Georgios Arvanitidis, Nadia
Figueroa, Gerhard Neumann, and Leonel Rozo
- Abstract要約: 完全自律型ロボットが望ましくない、あるいは潜在的に有害な行動を起こさないためには、安定性の保証が不可欠である。
本稿では,ニューラルアーキテクチャが収縮を保証するニューラル収縮力学系を学習するための新しい手法を提案する。
提案手法は, 現状技術よりも所望の力学を正確に符号化し, 安定性の保証がより少ないことを示す。
- 参考スコア(独自算出の注目度): 13.046426079291376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stability guarantees are crucial when ensuring a fully autonomous robot does
not take undesirable or potentially harmful actions. Unfortunately, global
stability guarantees are hard to provide in dynamical systems learned from
data, especially when the learned dynamics are governed by neural networks. We
propose a novel methodology to learn neural contractive dynamical systems,
where our neural architecture ensures contraction, and hence, global stability.
To efficiently scale the method to high-dimensional dynamical systems, we
develop a variant of the variational autoencoder that learns dynamics in a
low-dimensional latent representation space while retaining contractive
stability after decoding. We further extend our approach to learning
contractive systems on the Lie group of rotations to account for full-pose
end-effector dynamic motions. The result is the first highly flexible learning
architecture that provides contractive stability guarantees with capability to
perform obstacle avoidance. Empirically, we demonstrate that our approach
encodes the desired dynamics more accurately than the current state-of-the-art,
which provides less strong stability guarantees.
- Abstract(参考訳): 完全自律型ロボットが望ましくない、あるいは潜在的に有害な行動を起こさないためには、安定性の保証が不可欠である。
残念ながら、データから学んだ動的システム、特に学習された力学がニューラルネットワークによって支配されている場合、グローバルな安定性を保証することは難しい。
ニューラル・コンダクティブ・ダイナミクスを学習するための新しい手法を提案し,そこではニューラル・アーキテクチャが収縮を確実にし,従って大域的安定性を保証している。
本手法を高次元力学系に効率的に拡張するために,デコード後の収縮安定性を維持しつつ低次元潜在表現空間のダイナミクスを学習する変分オートエンコーダの変種を開発した。
回転のリー群上の契約系学習への我々のアプローチをさらに拡張し、完全なエンドエフェクタ動的運動を考慮した。
その結果,障害回避機能を備えた契約的安定性保証を提供する,初めての,柔軟な学習アーキテクチャが実現した。
実験的に、我々の手法は現在の最先端技術よりもより正確に所望のダイナミクスを符号化し、安定性の保証がより少ないことを実証する。
関連論文リスト
- Learning Deep Dissipative Dynamics [5.862431328401459]
分散性は、安定性と入出力安定性を一般化する力学系にとって重要な指標である。
本稿では,ニューラルネットワークで表現される任意のダイナミクスを散逸型プロジェクションに変換する微分可能プロジェクションを提案する。
本手法は, 訓練された力学系の安定性, 入力出力安定性, エネルギー保存を厳密に保証する。
論文 参考訳(メタデータ) (2024-08-21T09:44:43Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Learning Stabilizable Deep Dynamics Models [1.75320459412718]
本稿では,入力-アフィン制御系のダイナミクスを学習するための新しい手法を提案する。
重要な特徴は、学習モデルの安定化コントローラと制御リャプノフ関数も得られることである。
提案手法はハミルトン-ヤコビ不等式の解法にも適用可能である。
論文 参考訳(メタデータ) (2022-03-18T03:09:24Z) - Recurrent Neural Network Controllers Synthesis with Stability Guarantees
for Partially Observed Systems [6.234005265019845]
本稿では、不確実な部分観測システムのための動的制御系として、リカレントニューラルネットワーク(RNN)の重要なクラスを考える。
本稿では、再パラメータ化空間における安定性条件を反復的に強制する計画的ポリシー勾配法を提案する。
数値実験により,本手法は,より少ないサンプルを用いて制御器の安定化を学習し,政策勾配よりも高い最終性能を達成することを示す。
論文 参考訳(メタデータ) (2021-09-08T18:21:56Z) - Safe Active Dynamics Learning and Control: A Sequential
Exploration-Exploitation Framework [30.58186749790728]
本研究では,力学の不確実性の存在下での安全性を維持するための理論的に正当なアプローチを提案する。
我々のフレームワークは、常に全ての制約の高確率満足度を保証します。
この理論解析は、オンライン適応能力を改善する最終層メタラーニングモデルの2つの正則化を動機付けている。
論文 参考訳(メタデータ) (2020-08-26T17:39:58Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。