論文の概要: Learning Deep Dissipative Dynamics
- arxiv url: http://arxiv.org/abs/2408.11479v1
- Date: Wed, 21 Aug 2024 09:44:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:39:23.933271
- Title: Learning Deep Dissipative Dynamics
- Title(参考訳): 深発散ダイナミクスの学習
- Authors: Yuji Okamoto, Ryosuke Kojima,
- Abstract要約: 分散性は、安定性と入出力安定性を一般化する力学系にとって重要な指標である。
本稿では,ニューラルネットワークで表現される任意のダイナミクスを散逸型プロジェクションに変換する微分可能プロジェクションを提案する。
本手法は, 訓練された力学系の安定性, 入力出力安定性, エネルギー保存を厳密に保証する。
- 参考スコア(独自算出の注目度): 5.862431328401459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study challenges strictly guaranteeing ``dissipativity'' of a dynamical system represented by neural networks learned from given time-series data. Dissipativity is a crucial indicator for dynamical systems that generalizes stability and input-output stability, known to be valid across various systems including robotics, biological systems, and molecular dynamics. By analytically proving the general solution to the nonlinear Kalman-Yakubovich-Popov (KYP) lemma, which is the necessary and sufficient condition for dissipativity, we propose a differentiable projection that transforms any dynamics represented by neural networks into dissipative ones and a learning method for the transformed dynamics. Utilizing the generality of dissipativity, our method strictly guarantee stability, input-output stability, and energy conservation of trained dynamical systems. Finally, we demonstrate the robustness of our method against out-of-domain input through applications to robotic arms and fluid dynamics. Code here https://github.com/kojima-r/DeepDissipativeModel
- Abstract(参考訳): 本研究は、与えられた時系列データから学習したニューラルネットワークによって表現される力学系の「分散性」を厳密に保証する。
分散性は、安定性と入力出力安定性を一般化する力学系にとって重要な指標であり、ロボット工学、生物学的システム、分子動力学など様々なシステムで有効であることが知られている。
非線形カルマン・ヤクボヴィチ・ポポフ(KYP)補題の一般解を解析的に証明することにより,ニューラルネットワークで表される任意の力学を散逸的状態に変換する微分可能射影法と,変換された力学の学習法を提案する。
本手法は, 分散性の一般性を利用して, 訓練された力学系の安定性, 入力出力安定性, エネルギー保存を厳密に保証する。
最後に,ロボットアームや流体力学への応用を通じて,ドメイン外入力に対する手法の堅牢性を示す。
code here https://github.com/kojima-r/DeepDissipativeModel
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Neural Contractive Dynamical Systems [13.046426079291376]
完全自律型ロボットが望ましくない、あるいは潜在的に有害な行動を起こさないためには、安定性の保証が不可欠である。
本稿では,ニューラルアーキテクチャが収縮を保証するニューラル収縮力学系を学習するための新しい手法を提案する。
提案手法は, 現状技術よりも所望の力学を正確に符号化し, 安定性の保証がより少ないことを示す。
論文 参考訳(メタデータ) (2024-01-17T17:18:21Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Learning Deep Input-Output Stable Dynamics [2.055949720959582]
入力出力安定性を保証する非線形系を学習する手法を提案する。
提案手法はハミルトン-ヤコビ不等式を満たす空間への微分可能射影を利用する。
その結果,ニューラルネットワークを用いた非線形システムは,ニューラルネットとは違って入力出力安定性を実現することがわかった。
論文 参考訳(メタデータ) (2022-06-27T07:54:34Z) - Learning effective dynamics from data-driven stochastic systems [2.4578723416255754]
この研究は、低速力学系に対する効果的な力学の研究に費やされている。
遅い多様体を学習するために,Auto-SDEと呼ばれるニューラルネットワークを含む新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-09T09:56:58Z) - Learning Stabilizable Deep Dynamics Models [1.75320459412718]
本稿では,入力-アフィン制御系のダイナミクスを学習するための新しい手法を提案する。
重要な特徴は、学習モデルの安定化コントローラと制御リャプノフ関数も得られることである。
提案手法はハミルトン-ヤコビ不等式の解法にも適用可能である。
論文 参考訳(メタデータ) (2022-03-18T03:09:24Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。