Application of the Schwinger Oscillator Construct of Angular Momentum to
an Interpretation of the Superconducting Transmon Qubit
- URL: http://arxiv.org/abs/2401.09573v1
- Date: Wed, 17 Jan 2024 19:50:12 GMT
- Title: Application of the Schwinger Oscillator Construct of Angular Momentum to
an Interpretation of the Superconducting Transmon Qubit
- Authors: R. P. Erickson
- Abstract summary: An angular-momentum-like basis is defined for quantum-entangled, two-photon states that form an angular-momentum-like basis.
This basis provides a convenient starting point to study error-inducing effects of transmon anharmonicity, surrounding-environment decoherence, and random stray fields on qubit state and gate operations.
The generality of the Schwinger angular-momentum construct allows it to be applied to other superconducting charge qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Schwinger oscillator construct of angular momentum, applied to the
superconducting transmon and its transmission-line readout, modeled as
capacitvely coupled quantum oscillators, provides a natural and robust
description of a qubit. The construct defines quantum-entangled, two-photon
states that form an angular-momentum-like basis, with symmetry corresponding to
physical conservation of total photon number, with respect to the combined
transmon and readout. This basis provides a convenient starting point from
which to study error-inducing effects of transmon anharmonicity,
surrounding-environment decoherence, and random stray fields on qubit state and
gate operations. Employing a Lindblad master equation to model dissipation to
the surrounding environment, and incorporating the effect of weak transmon
anharmonicity, we present examples of the utility of the construct. First, we
calculate the frequency response associated with exciting the ground state to a
Rabi resonance with the lowest-lying spin-1/2 moment, via a driving external
voltage. Second, we calculate the frequency response between the three lowest
two-photon states, within a ladder-type excitation scheme. The generality of
the Schwinger angular-momentum construct allows it to be applied to other
superconducting charge qubits.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Two-dimensional topological effect in a transmon qubit array with tunable couplings [6.358193602870173]
We investigate a square-lattice architecture of superconducting transmon qubits with inter-qubit interactions mediated by inductive couplers.
The inductive couling between the qubit and couplers is suggested to be designed into the gradiometer form to intigimate the flux noise orginating from the environment.
We present a systematic method on how to measure the topological band structure based on time- and space-domain Frourier transformation of the wave function after properly excited.
arXiv Detail & Related papers (2024-02-05T00:57:12Z) - Generalized transmon Hamiltonian for Andreev spin qubits [0.0]
We solve the problem of an interacting quantum dot embedded in a Josephson junction between two superconductors with finite charging energy.
The approach is based on the flat-band approximation of the Richardson model, which reduces the Hilbert space to the point where exact diagonalisation is possible.
arXiv Detail & Related papers (2024-02-03T10:58:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Harmonic dual dressing of spin one-half systems [0.0]
Controlled modifications of the quantum magnetic response are produced in dressed systems by a high frequency, strong and not-resonant electromagnetic field.
The secondary field enables a fine tuning of the qubit response, with control parameters amplitude, harmonic content, spatial orientation and phase relation.
arXiv Detail & Related papers (2021-08-18T14:36:10Z) - Geometric superinductance qubits: Controlling phase delocalization
across a single Josephson junction [0.0]
We present a large variety of qubits all stemming from the same circuit but with drastically different characteristic energy scales.
The use of a geometric inductor results in high precision of the inductive and capacitive energy as guaranteed by top-down lithography.
arXiv Detail & Related papers (2021-06-10T16:09:36Z) - Magnifying quantum phase fluctuations with Cooper-pair pairing [0.0]
We fabricate a generalized Josephson element that can be tuned in situ between one- and two-Cooper-pair tunneling.
We measure a tenfold suppression of flux sensitivity of the first transition energy, implying a twofold increase in the vacuum phase fluctuations.
arXiv Detail & Related papers (2020-10-29T11:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.