Cavity-enhanced narrowband spectral filters using rare-earth ions doped in thin-film lithium niobate
- URL: http://arxiv.org/abs/2401.09655v2
- Date: Thu, 30 May 2024 17:37:45 GMT
- Title: Cavity-enhanced narrowband spectral filters using rare-earth ions doped in thin-film lithium niobate
- Authors: Yuqi Zhao, Dylan Renaud, Demitry Farfurnik, Yuxi Jiang, Subhojit Dutta, Neil Sinclair, Marko Loncar, Edo Waks,
- Abstract summary: We demonstrate a cavity-enhanced spectral filtering based on rare-earth ions in an integrated nonlinear optical platform.
We achieve bandpass filters ranging from 7 MHz linewidth, with 13.0 dB of extinction, to 24 MHz linewidth, with 20.4 dB of extinction.
Such versatile integrated spectral filters with high extinction ratio and narrow linewidth could serve as fundamental components for optical signal processing and optical memories on-a-chip.
- Score: 0.24091079613649838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On-chip optical filters are fundamental components in optical signal processing. While rare-earth ion-doped crystals offer ultra-narrow optical filtering via spectral hole burning, their applications have primarily been limited to those using bulk crystals, restricting their utility. In this work, we demonstrate cavity-enhanced spectral filtering based on rare-earth ions in an integrated nonlinear optical platform. We incorporate rare-earth ions into high quality-factor ring resonators patterned in thin-film lithium niobate. By spectral hole burning at 4K in a critically coupled resonance mode, we achieve bandpass filters ranging from 7 MHz linewidth, with 13.0 dB of extinction, to 24 MHz linewidth, with 20.4 dB of extinction. By reducing the temperature to 100 mK to eliminate phonon broadening, we achieve an even narrower linewidth of 681 kHz, which is comparable to the narrowest filter linewidth demonstrated in an integrated photonic device, while only requiring a small device footprint. Moreover, the cavity enables reconfigurable filtering by varying the cavity coupling rate. For instance, as opposed to the bandpass filter, we demonstrate a bandstop filter utilizing an under-coupled ring resonator. Such versatile integrated spectral filters with high extinction ratio and narrow linewidth could serve as fundamental components for optical signal processing and optical memories on-a-chip.
Related papers
- Wafer-Scale Fabrication of InGaP-on-Insulator for Nonlinear and Quantum Photonic Applications [0.0]
InGaP-on-insulator is optimized for visible-to-telecommunication wavelength $chileft (2right)$ nonlinear optical processes.
We demonstrate intrinsic resonator quality factors as high as 324,000 (440,000) for single-resonance modes near 1550 nm.
These results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.
arXiv Detail & Related papers (2024-06-26T23:15:36Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - How to Build an Optical Filter with an Atomic Vapor Cell [3.170382594974823]
Atomic vapors are highly suited for spectrally narrow-banded optical filters.
They come in two flavors: a filter based on the absorption of light by the Doppler broadened atomic vapor, and a bandpass filter based on the transmission of resonant light caused by the Faraday effect.
arXiv Detail & Related papers (2023-04-30T20:37:06Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Low-pass filter with ultra-wide stopband for quantum computing
applications [0.0]
A new type of low-pass filter based on a leaky coaxial waveguide is presented.
The filter has minimal insertion loss in the pass band, while at the same time high attenuation in the stop band is achieved.
It is suitable for superconducting quantum computing applications where qubits are sensitive to radiation with energy high enough to break Cooper-pairs.
arXiv Detail & Related papers (2022-05-08T19:27:35Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Thermal tuning of a fiber-integrated Fabry-P\'erot cavity [53.869623568923515]
We present the thermal tuning capability of an alignment-free fiber-integrated Fabry-P'erot cavity.
We show the temperature tuning of the resonance wavelength of the cavity without any degradation of the finesse.
arXiv Detail & Related papers (2021-05-25T10:42:03Z) - Neural network-based on-chip spectroscopy using a scalable plasmonic
encoder [0.4397520291340694]
Conventional spectrometers are limited by trade-offs set by size, cost, signal-to-noise ratio (SNR), and spectral resolution.
Here, we demonstrate a deep learning-based spectral reconstruction framework using a compact and low-cost on-chip sensing scheme.
arXiv Detail & Related papers (2020-12-01T22:50:06Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z) - High-fidelity, low-latency polarization quantum state transmissions over
a hollow-core conjoined-tube fibre at around 800 nm [9.633003822258685]
We show high-fidelity (0.98) single-photon transmission and distribution of entangled photons over a conjoined-tube hollow-core fibre (CTF)
Our CTF realized the combined merits of low loss, high spatial mode purity, low polarization degradation, and low chromatic dispersion.
We also demonstrate single-photon low latency (99.96% speed of light in vacuum) transmission, thus paving the way for extensive uses of links in versatile polarization-based quantum information processing.
arXiv Detail & Related papers (2020-06-23T03:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.