WindSeer: Real-time volumetric wind prediction over complex terrain
aboard a small UAV
- URL: http://arxiv.org/abs/2401.09944v1
- Date: Thu, 18 Jan 2024 12:46:26 GMT
- Title: WindSeer: Real-time volumetric wind prediction over complex terrain
aboard a small UAV
- Authors: Florian Achermann, Thomas Stastny, Bogdan Danciu, Andrey Kolobov, Jen
Jen Chung, Roland Siegwart, and Nicholas Lawrance
- Abstract summary: We train a neural network, WindSeer, using only synthetic data from computational fluid dynamics simulations.
WindSeer can generate accurate predictions at different resolutions and domain sizes on previously unseen topography without retraining.
We demonstrate that the model successfully predicts historical wind data collected by weather stations and wind measured onboard drones.
- Score: 29.345342470012724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time high-resolution wind predictions are beneficial for various
applications including safe manned and unmanned aviation. Current weather
models require too much compute and lack the necessary predictive capabilities
as they are valid only at the scale of multiple kilometers and hours - much
lower spatial and temporal resolutions than these applications require. Our
work, for the first time, demonstrates the ability to predict low-altitude wind
in real-time on limited-compute devices, from only sparse measurement data. We
train a neural network, WindSeer, using only synthetic data from computational
fluid dynamics simulations and show that it can successfully predict real wind
fields over terrain with known topography from just a few noisy and spatially
clustered wind measurements. WindSeer can generate accurate predictions at
different resolutions and domain sizes on previously unseen topography without
retraining. We demonstrate that the model successfully predicts historical wind
data collected by weather stations and wind measured onboard drones.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - A Foundation Model for the Earth System [82.73624748093333]
We introduce Aurora, a large-scale foundation model for the Earth system trained on over a million hours of diverse data.
Aurora outperforms operational forecasts for air quality, ocean waves, tropical cyclone tracks, and high-resolution weather forecasting at orders of magnitude smaller computational expense than dedicated existing systems.
arXiv Detail & Related papers (2024-05-20T14:45:18Z) - Reduction of rain-induced errors for wind speed estimation on SAR
observations using convolutional neural networks [0.16067645574373132]
We train a wind speed estimator with reduced errors under rain.
Results demonstrate the capacity of deep learning models to correct rain-related errors in SAR products.
arXiv Detail & Related papers (2023-03-16T10:19:14Z) - An unsupervised learning approach for predicting wind farm power and
downstream wakes using weather patterns [0.0]
We develop a novel wind energy workflow that combines weather patterns derived from unsupervised clustering techniques with numerical weather prediction models.
We show that our long-term predictions agree with those from a year of WRF simulations but require less than 2% of the computational time.
Our approach facilitates multi-year predictions of power output and downstream farm wakes, by providing a fast, accurate and flexible methodology.
arXiv Detail & Related papers (2023-02-12T10:05:25Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Wind power predictions from nowcasts to 4-hour forecasts: a learning
approach with variable selection [1.4623784198777086]
We study the prediction of short term wind speed and wind power (every 10 minutes up to 4 hours ahead)
For the wind power prediction, we also compare the indirect approach (wind speed predictions passed through a power curve) and the indirect one (directly predict wind power)
arXiv Detail & Related papers (2022-04-20T10:09:22Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
Line of sight satellite systems, unmanned aerial vehicles, high-altitude platforms, and microwave links are extremely susceptible to rain.
Rain fade forecasting for these systems is critical because it allows the system to switch between ground gateways proactively before a rain fade event to maintain seamless service.
Deep learning architecture is proposed that forecasts future rain fade using satellite and radar imagery data as well as link power measurements.
arXiv Detail & Related papers (2021-10-02T00:43:02Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
We present a weather prediction technique that utilizes historical data from multiple weather stations to train simple machine learning models.
The accuracy of the models is good enough to be used alongside the current state-of-the-art techniques.
arXiv Detail & Related papers (2020-08-25T02:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.