A Comparative Analysis of U-Net-based models for Segmentation of Cardiac MRI
- URL: http://arxiv.org/abs/2401.09980v2
- Date: Thu, 07 Nov 2024 18:43:06 GMT
- Title: A Comparative Analysis of U-Net-based models for Segmentation of Cardiac MRI
- Authors: Ketan Suhaas Saichandran,
- Abstract summary: This paper aims to explore the application of deep learning techniques in the semantic segmentation of Cardiac short-axis MRI (Magnetic Resonance Imaging) images.
The focus centers on implementing various architectures that are derivatives of U-Net, to effectively isolate specific parts of the heart for comprehensive anatomical and functional analysis.
- Score: 0.0
- License:
- Abstract: Medical imaging refers to the technologies and methods utilized to view the human body and its inside, in order to diagnose, monitor, or even treat medical disorders. This paper aims to explore the application of deep learning techniques in the semantic segmentation of Cardiac short-axis MRI (Magnetic Resonance Imaging) images, aiming to enhance the diagnosis, monitoring, and treatment of medical disorders related to the heart. The focus centers on implementing various architectures that are derivatives of U-Net, to effectively isolate specific parts of the heart for comprehensive anatomical and functional analysis. Through a combination of images, graphs, and quantitative metrics, the efficacy of the models and their predictions are showcased. Additionally, this paper addresses encountered challenges and outline strategies for future improvements. This abstract provides a concise overview of the efforts in utilizing deep learning for cardiac image segmentation, emphasizing both the accomplishments and areas for further refinement.
Related papers
- How good nnU-Net for Segmenting Cardiac MRI: A Comprehensive Evaluation [2.5725730509014353]
In this study, we evaluate the performance of nnU-Net in segmenting cardiac magnetic resonance images (MRIs)
We employ various nnU-Net configurations, including 2D, 3D full resolution, 3D low resolution, 3D cascade, and ensemble models.
arXiv Detail & Related papers (2024-07-26T01:47:20Z) - Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images [2.232567376976564]
Since 2019, the global dissemination of the Coronavirus and its novel strains has resulted in a surge of new infections.
The use of X-ray and computed tomography (CT) imaging techniques is critical in diagnosing and managing COVID-19.
This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.
arXiv Detail & Related papers (2024-01-13T09:17:39Z) - Performance Analysis of UNet and Variants for Medical Image Segmentation [1.5410557873153836]
This study aims to explore the application of deep learning models, particularly focusing on the UNet architecture and its variants, in medical image segmentation.
The findings reveal that the standard UNet, when extended with a deep network layer, is a proficient medical image segmentation model.
The Res-UNet and Attention Res-UNet architectures demonstrate smoother convergence and superior performance, particularly when handling fine image details.
arXiv Detail & Related papers (2023-09-22T17:20:40Z) - Medical Image Segmentation on MRI Images with Missing Modalities: A
Review [3.9548535445908928]
The main goal of this research is to offer a performance evaluation of missing modality compensating networks.
Various approaches have been developed over time to mitigate this problem's negative implications.
arXiv Detail & Related papers (2022-03-11T19:33:26Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.