論文の概要: Communication-Efficient Personalized Federated Learning for
Speech-to-Text Tasks
- arxiv url: http://arxiv.org/abs/2401.10070v1
- Date: Thu, 18 Jan 2024 15:39:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 15:57:11.248219
- Title: Communication-Efficient Personalized Federated Learning for
Speech-to-Text Tasks
- Title(参考訳): 音声テキストタスクのためのコミュニケーション効率の良い個人化フェデレーション学習
- Authors: Yichao Du, Zhirui Zhang, Linan Yue, Xu Huang, Yuqing Zhang, Tong Xu,
Linli Xu and Enhong Chen
- Abstract要約: プライバシー保護と法的規制を満たすために、連邦学習(FL)は、音声テキスト(S2T)システムのトレーニングにおいて大きな注目を集めている。
S2Tタスクで一般的に使用されるFLアプローチ(textscFedAvg)は、通常、広範な通信オーバーヘッドに悩まされる。
我々は、クライアント側チューニングとサーバとのインタラクションのための軽量なLoRAモジュールであるtextscFedLoRA と、$k$-near を備えたグローバルモデルである textscFedMem を導入したパーソナライズされたS2Tフレームワークを提案する。
- 参考スコア(独自算出の注目度): 66.78640306687227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To protect privacy and meet legal regulations, federated learning (FL) has
gained significant attention for training speech-to-text (S2T) systems,
including automatic speech recognition (ASR) and speech translation (ST).
However, the commonly used FL approach (i.e., \textsc{FedAvg}) in S2T tasks
typically suffers from extensive communication overhead due to multi-round
interactions based on the whole model and performance degradation caused by
data heterogeneity among clients.To address these issues, we propose a
personalized federated S2T framework that introduces \textsc{FedLoRA}, a
lightweight LoRA module for client-side tuning and interaction with the server
to minimize communication overhead, and \textsc{FedMem}, a global model
equipped with a $k$-nearest-neighbor ($k$NN) classifier that captures
client-specific distributional shifts to achieve personalization and overcome
data heterogeneity. Extensive experiments based on Conformer and Whisper
backbone models on CoVoST and GigaSpeech benchmarks show that our approach
significantly reduces the communication overhead on all S2T tasks and
effectively personalizes the global model to overcome data heterogeneity.
- Abstract(参考訳): プライバシー保護と法的規制を満たすために、自動音声認識(ASR)や音声翻訳(ST)を含むS2Tシステムの訓練において、連邦学習(FL)が注目されている。
However, the commonly used FL approach (i.e., \textsc{FedAvg}) in S2T tasks typically suffers from extensive communication overhead due to multi-round interactions based on the whole model and performance degradation caused by data heterogeneity among clients.To address these issues, we propose a personalized federated S2T framework that introduces \textsc{FedLoRA}, a lightweight LoRA module for client-side tuning and interaction with the server to minimize communication overhead, and \textsc{FedMem}, a global model equipped with a $k$-nearest-neighbor ($k$NN) classifier that captures client-specific distributional shifts to achieve personalization and overcome data heterogeneity.
CoVoST および GigaSpeech ベンチマークにおける Conformer と Whisper のバックボーンモデルに基づく大規模な実験により,本手法は全 S2T タスクにおける通信オーバーヘッドを大幅に低減し,データ不均一性を克服するためにグローバルモデルを効果的にパーソナライズすることを示す。
関連論文リスト
- Personalized federated learning based on feature fusion [2.943623084019036]
フェデレートされた学習により、分散クライアントは、クライアントのプライバシを保護するためにデータをローカルに保存しながら、トレーニングで協力することができる。
pFedPMと呼ばれる個人化学習手法を提案する。
このプロセスでは、従来のグラデーションアップロードを機能アップロードに置き換え、通信コストを削減し、異種クライアントモデルを可能にする。
論文 参考訳(メタデータ) (2024-06-24T12:16:51Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Collaborative Chinese Text Recognition with Personalized Federated
Learning [61.34060587461462]
中国語のテキスト認識では、ある組織が類似の組織から大量のデータを収集することがしばしば必要である。
アドレスや電話番号などのテキストデータに個人情報が自然に存在するため、異なる組織はプライベートデータを共有したくない。
中国語テキスト認識タスクにパーソナライズド・フェデレーション・ラーニング(pFL)を導入し,pFedCRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-09T16:51:00Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text
Joint Pre-Training [33.02912456062474]
我々は、ラベルなしテキストのBERT目的とラベルなし音声のw2v-BERT目的とを併用した単一のエンコーダを構築する。
プレトレーニング中に音声データとテキストデータの両方を組み込むことで、CoVoST2音声翻訳における下流品質が大幅に向上することが実証された。
論文 参考訳(メタデータ) (2021-10-20T00:59:36Z) - ATCSpeechNet: A multilingual end-to-end speech recognition framework for
air traffic control systems [15.527854608553824]
ATCSpeechNetは、航空交通制御システムにおけるコミュニケーション音声を人間可読テキストに変換する問題に取り組むために提案されている。
特徴工学や辞書を使わずに、音声波形を直接テキストに変換するエンドツーエンドのパラダイムが開発されている。
ATCSpeech corpusの実験結果から,非常に小さなラベル付きコーパスを用いて,提案手法が高い性能を実現することが示された。
論文 参考訳(メタデータ) (2021-02-17T02:27:09Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
本研究は,少ショット関係分類(FSRC)に焦点を当てる。
クラスプロトタイプの表現にラベル単語を追加するための適応的混合機構を提案する。
FewRelでは、異なる数ショット(FS)設定で実験が行われた。
論文 参考訳(メタデータ) (2021-01-10T11:25:42Z) - Federated Unsupervised Representation Learning [56.715917111878106]
フェデレート非教師表現学習(FURL)と呼ばれるフェデレーション学習における新しい問題を定式化し、教師なしの共通表現モデルを学習する。
FedCAは2つの主要なモジュールで構成されている: 辞書モジュールは、各クライアントからのサンプルの表現を集約し、表現空間の整合性のためにすべてのクライアントと共有し、アライメントモジュールは、公開データに基づいてトレーニングされたベースモデル上で各クライアントの表現を整合させる。
論文 参考訳(メタデータ) (2020-10-18T13:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。