論文の概要: Comparison analysis between standard polysomnographic data and in-ear-EEG signals: A preliminary study
- arxiv url: http://arxiv.org/abs/2401.10107v4
- Date: Tue, 6 Aug 2024 08:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 19:31:50.221337
- Title: Comparison analysis between standard polysomnographic data and in-ear-EEG signals: A preliminary study
- Title(参考訳): 標準ポリソノグラフィーデータと耳内EEG信号の比較分析 : 予備的検討
- Authors: Gianpaolo Palo, Luigi Fiorillo, Giuliana Monachino, Michal Bechny, Michel Walti, Elias Meier, Francesca Pentimalli Biscaretti di Ruffia, Mark Melnykowycz, Athina Tzovara, Valentina Agostini, Francesca Dalia Faraci,
- Abstract要約: ポリソムノグラフィー(PSG)は、現在睡眠障害評価の指標となっている。
有望な競合製品の一つが、ear-EEGセンサーだ。
本研究の目的は,単一チャネル内EEGと標準PSGの類似性を評価する手法を確立することである。
- 参考スコア(独自算出の注目度): 0.10910416614141322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored. One promising contender is the in-ear-EEG sensor. This study aims to establish a methodology to assess the similarity between the single-channel in-ear-EEG and standard PSG derivations. Methods: The study involves four-hour signals recorded from ten healthy subjects aged 18 to 60 years. Recordings are analyzed following two complementary approaches: (i) a hypnogram-based analysis aimed at assessing the agreement between PSG and in-ear-EEG-derived hypnograms; and (ii) a feature-based analysis based on time- and frequency- domain feature extraction, unsupervised feature selection, and definition of Feature-based Similarity Index via Jensen-Shannon Divergence (JSD-FSI). Results: We find large variability between PSG and in-ear-EEG hypnograms scored by the same sleep expert according to Cohen's kappa metric, with significantly greater agreements for PSG scorers than for in-ear-EEG scorers (p < 0.001) based on Fleiss' kappa metric. On average, we demonstrate a high similarity between PSG and in-ear-EEG signals in terms of JSD-FSI (0.79 +/- 0.06 -awake, 0.77 +/- 0.07 -NREM, and 0.67 +/- 0.10 -REM) and in line with the similarity values computed independently on standard PSG-channel-combinations. Conclusions: In-ear-EEG is a valuable solution for home-based sleep monitoring, however further studies with a larger and more heterogeneous dataset are needed.
- Abstract(参考訳): Study Objectives: Polysomnography (PSG) は現在睡眠障害評価のベンチマークとして機能している。
その不快さは長期監視を不可能にし、睡眠品質評価のバイアスを引き起こす。
したがって、侵襲性が低く、コスト効率が高く、ポータブルな代替手段を探る必要がある。
有望な競合製品の一つが、ear-EEGセンサーだ。
本研究の目的は,単一チャネル内EEGと標準PSGの類似性を評価する手法を確立することである。
方法:この研究は18歳から60歳までの健康な10人の被験者から4時間の信号が記録されている。
録音は2つの補完的アプローチに従って分析される。
(i)PSGと初期EEG由来のハイドノグラムとの合意を評価するためのハイドノグラムに基づく分析、及び
(II)Jensen-Shannon Divergence (JSD-FSI)による時間・周波数領域の特徴抽出、教師なしの特徴選択、特徴に基づく類似度指数の定義に基づく特徴ベース分析。
結果: コーエンのカッパ測定値では, 睡眠専門家が測定したPSGと耳内EEGのヒポノグラムの間に大きな変動がみられ, フレイスのカッパ測定値に基づく耳内EEGスコアラー (p < 0.001) よりもPSGスコアラーの方が有意に大きな一致を示した。
JSD-FSI (0.79 +/- 0.06 -awake, 0.77 +/- 0.07 -NREM, 0.67 +/- 0.10 -REM) と、標準PSG-チャネル合成で独立に計算された類似値との相似性を平均的に示す。
結論: In-ear-EEGは在宅睡眠モニタリングに有用なソリューションであるが、より大きく異質なデータセットによるさらなる研究が必要である。
関連論文リスト
- rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
論文 参考訳(メタデータ) (2024-10-09T11:17:02Z) - Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images [0.23960026858846614]
本研究の目的は,甲状腺シンチグラフィー画像を用いた甲状腺疾患分類を向上する自動パイプラインを開発することである。
2,643人の甲状腺シンチグラフィー画像を収集し,DG(diffuse goiter),MNG(multinodal goiter),甲状腺炎(TH)に分類した。
パイプラインは、さまざまなクラスにわたるいくつかの分類指標で、医師のセグメンテーションに匹敵するパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-07-14T21:29:28Z) - Validation of a new, minimally-invasive, software smartphone device to predict sleep apnea and its severity: transversal study [3.798946451618375]
閉塞性睡眠時無呼吸(OSA)は頻繁で、心臓血管の合併症や日中の過度な睡眠障害の原因となる。
スマートフォンのセンサーを使う別の方法は、診断を高めるのに役立つかもしれない。
本稿は,PSGによるスコアと比較して,スマートフォンによる信号の手動スコアリングが可能であり,正確であることを示す。
論文 参考訳(メタデータ) (2024-06-20T14:36:15Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
心電図(ECG)信号は、ベースラインダウトなど、一般的にノイズ干渉に悩まされる。
本稿では,新しいECGベースラインホアリングとノイズ除去技術を提案する。
論文 参考訳(メタデータ) (2022-07-31T23:39:33Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
本稿では,脳波以外の追加信号の利用の利便性について検討し,比較する。
最も優れたモデルである深部分離畳み込みニューラルネットワークのアンサンブルは86.06%の精度を達成した。
論文 参考訳(メタデータ) (2021-07-23T06:37:38Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Classification of Schizophrenia from Functional MRI Using Large-scale
Extended Granger Causality [0.0]
大規模拡張グランジャー因果関係(lsxgc)は脳ネットワーク接続の変化を捉えることができる。
lsXGCは典型的なコントロールから統合失調症の患者を分類するためのバイオマーカーとして機能します。
統合失調症のバイオマーカーとしてのlsXGCの適用性について検討した。
論文 参考訳(メタデータ) (2021-01-12T20:36:26Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。