論文の概要: Migrating Birds Optimization-Based Feature Selection for Text
Classification
- arxiv url: http://arxiv.org/abs/2401.10270v1
- Date: Thu, 4 Jan 2024 08:11:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-28 16:17:14.883995
- Title: Migrating Birds Optimization-Based Feature Selection for Text
Classification
- Title(参考訳): テキスト分類のための鳥の最適化に基づく特徴選択
- Authors: Cem Kaya, Zeynep Hilal Kilimci, Mitat Uysal, Murat Kaya
- Abstract要約: MBO-NBは、多数の特徴を持つテキスト分類における特徴選択問題に対処する新しいアプローチである。
本実験は,MBO-NBが既存技術に比べて機能低下に優れることを示した。
- 参考スコア(独自算出の注目度): 0.4915744683251149
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research introduces a novel approach, MBO-NB, that leverages Migrating
Birds Optimization (MBO) coupled with Naive Bayes as an internal classifier to
address feature selection challenges in text classification having large number
of features. Focusing on computational efficiency, we preprocess raw data using
the Information Gain algorithm, strategically reducing the feature count from
an average of 62221 to 2089. Our experiments demonstrate MBO-NB's superior
effectiveness in feature reduction compared to other existing techniques,
emphasizing an increased classification accuracy. The successful integration of
Naive Bayes within MBO presents a well-rounded solution. In individual
comparisons with Particle Swarm Optimization (PSO), MBO-NB consistently
outperforms by an average of 6.9% across four setups. This research offers
valuable insights into enhancing feature selection methods, providing a
scalable and effective solution for text classification
- Abstract(参考訳): そこで本研究では,Naive Bayesと組み合わせたMBO-NB(Migrating Birds Optimization)を内部分類器として活用し,多数の特徴を有するテキスト分類における特徴選択問題に対処する手法を提案する。
計算効率に着目し,情報ゲインアルゴリズムを用いて生データを前処理し,特徴量を平均62221から2089まで戦略的に削減する。
本実験は,従来の手法に比べて機能削減においてmbo-nbが優れていることを示し,分類精度の向上を強調する。
MBO内のネイブベイズの統合が成功すると、よく取りまとめられた解が得られる。
パーティクルスワーム最適化(PSO)との比較では、MBO-NBは4つの設定で平均6.9%向上している。
本研究は、特徴選択手法の強化に関する貴重な洞察を提供し、テキスト分類のためのスケーラブルで効果的なソリューションを提供する。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - An Effective Networks Intrusion Detection Approach Based on Hybrid
Harris Hawks and Multi-Layer Perceptron [47.81867479735455]
本稿では,Harris Hawks Optimization (HHO) を用いた多層パーセプトロン学習のための侵入検知システムを提案する。
HHO-MLPは、ネットワークの侵入検出エラーを最小限に抑えるため、学習プロセスにおいて最適なパラメータを選択することを目的としている。
HHO-MLPは、93.17%の精度、95.41%の感度、95.41%の特異度でトップスコアを獲得することで、優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-21T06:25:50Z) - Compact NSGA-II for Multi-objective Feature Selection [0.24578723416255746]
特徴選択を,分類精度を最大化し,選択した特徴数の最小化を目的とした多目的バイナリ最適化タスクとして定義する。
最適な特徴を選択するために,2進圧縮型NSGA-II (CNSGA-II) アルゴリズムを提案する。
我々の知る限りでは、これは特徴選択のために提案された最初のコンパクトな多目的アルゴリズムである。
論文 参考訳(メタデータ) (2024-02-20T01:10:12Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Feature selection algorithm based on incremental mutual information and
cockroach swarm optimization [12.297966427336124]
インクリメンタルな相互情報に基づく改良型Swarm知的最適化法(IMIICSO)を提案する。
この方法は、グループアルゴリズムのグローバル検索をガイドするために、決定テーブルの削減知識を抽出する。
改良されたゴキブリ群最適化アルゴリズムによって選択された特徴部分集合の精度は、インクリメンタルな相互情報に基づいて、元のスワム知能最適化アルゴリズムと同等か、ほぼ同程度である。
論文 参考訳(メタデータ) (2023-02-21T08:51:05Z) - An efficient hybrid classification approach for COVID-19 based on Harris
Hawks Optimization and Salp Swarm Optimization [0.0]
本研究では、Covid-19分類のためのHarris Hawks Optimization Algorithm(HHO)とSalp Swarm Optimization(SSA)のハイブリッドバイナリバージョンを提案する。
提案アルゴリズム(HHOSSA)は,SVMで96%の精度,2つの分類器で98%,98%の精度を達成した。
論文 参考訳(メタデータ) (2022-12-25T19:52:18Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study [1.6436293069942312]
情報科学の急速な発展によって引き起こされる「次元のカルス」は、大きなデータセットを扱う際に悪影響を及ぼす可能性がある。
本研究では,スナロー探索アルゴリズム(SSA)の変種であるTent L'evy Flying Sparrow Searchアルゴリズム(TFSSA)を提案する。
TFSSAは、分類のためにパッキングパターンにおける機能の最も優れたサブセットを選択するために使用される。
論文 参考訳(メタデータ) (2022-09-20T15:12:10Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection [0.0]
本稿では,Reinforced Swarm Optimization (RSO) という特徴選択アルゴリズムを提案する。
このアルゴリズムは、広く使われているBee Swarm Optimization (BSO)アルゴリズムとReinforcement Learning (RL)アルゴリズムを組み込んで、優れた検索エージェントの報酬を最大化し、劣悪なエージェントを罰する。
提案手法は、バランスの取れたデータと不均衡なデータの完全なブレンドを含む、広く知られている25のUCIデータセットで評価される。
論文 参考訳(メタデータ) (2021-07-29T17:38:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。