論文の概要: Analyzing Brain Activity During Learning Tasks with EEG and Machine
Learning
- arxiv url: http://arxiv.org/abs/2401.10285v1
- Date: Mon, 15 Jan 2024 18:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-28 16:22:57.792866
- Title: Analyzing Brain Activity During Learning Tasks with EEG and Machine
Learning
- Title(参考訳): 脳波と機械学習による学習タスク中の脳活動の分析
- Authors: Ryan Cho, Mobasshira Zaman, Kyu Taek Cho, Jaejin Hwang
- Abstract要約: 本研究の目的は、様々なSTEM活動中の脳活動を分析し、異なるタスク間の分類の可能性を探ることである。
5つの認知タスクに従事した20名の被験者の脳波データを収集し,4秒のクリップに分割した。
この研究は、脳の活動を分析し、脳のメカニズムに光を当てることにおいて、機械学習を実装することのより深い理解に寄与する。
- 参考スコア(独自算出の注目度): 0.1433758865948252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aimed to analyze brain activity during various STEM activities,
exploring the feasibility of classifying between different tasks. EEG brain
data from twenty subjects engaged in five cognitive tasks were collected and
segmented into 4-second clips. Power spectral densities of brain frequency
waves were then analyzed. Testing different k-intervals with XGBoost, Random
Forest, and Bagging Classifier revealed that Random Forest performed best,
achieving a testing accuracy of 91.07% at an interval size of two. When
utilizing all four EEG channels, cognitive flexibility was most recognizable.
Task-specific classification accuracy showed the right frontal lobe excelled in
mathematical processing and planning, the left frontal lobe in cognitive
flexibility and mental flexibility, and the left temporoparietal lobe in
connections. Notably, numerous connections between frontal and temporoparietal
lobes were observed during STEM activities. This study contributes to a deeper
understanding of implementing machine learning in analyzing brain activity and
sheds light on the brain's mechanisms.
- Abstract(参考訳): 本研究の目的は、様々なSTEM活動中の脳活動を分析し、異なるタスク間の分類の可能性を探ることである。
5つの認知課題に携わった20名の被験者の脳波脳データを収集し,4秒間のクリップに分割した。
次に、脳波のパワースペクトル密度を解析した。
XGBoost、Random Forest、Bagging Classifierで異なるk-intervalを試験した結果、Random Forestは2つの間隔でテスト精度91.07%を達成した。
4つの脳波チャンネル全てを利用する場合、認知的柔軟性が最も認識できた。
タスク固有の分類精度は, 数学的処理と計画に優れた右前頭葉, 認知的柔軟性と精神的柔軟性の左前頭葉, 接続性の左後頭葉であった。
特に,STEM活動中に前頭葉と側頭葉の多数の関係が観察された。
本研究は、脳活動の分析における機械学習の実装に関する深い理解に寄与し、脳のメカニズムに光を当てる。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Latent Representation Learning for Multimodal Brain Activity Translation [14.511112110420271]
本稿では、空間的および時間的解像度ギャップをモダリティに橋渡しするSAMBA(Spatiotemporal Alignment of Multimodal Brain Activity)フレームワークを提案する。
SAMBAは、電気生理学的記録のスペクトルフィルタリングのための新しい注目ベースのウェーブレット分解を導入した。
SAMBAの学習は、翻訳の他に、脳情報処理の豊かな表現も学べることが示されている。
論文 参考訳(メタデータ) (2024-09-27T05:50:29Z) - Cross-subject Brain Functional Connectivity Analysis for Multi-task Cognitive State Evaluation [16.198003101055264]
本研究は脳機能と脳波信号とを併用し,複数の被験者の脳領域の関連性を把握し,リアルタイム認知状態を評価する。
分析と評価のために30件の被験者が取得され, 内的対象, 対人的対象, ジェンダー的基盤となる脳機能接続など, さまざまな視点で解釈される。
論文 参考訳(メタデータ) (2024-08-27T12:51:59Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Prediction of multitasking performance post-longitudinal tDCS via
EEG-based functional connectivity and machine learning methods [1.9351774578832828]
認知能力の変化を予測するため,脳波に基づく機能的接続解析と機械学習アルゴリズムを用いた。
本稿では,リアルタイム認知状態評価装置の開発における結果の影響について論じる。
論文 参考訳(メタデータ) (2024-01-31T10:03:27Z) - High-Accuracy Machine Learning Techniques for Functional Connectome
Fingerprinting and Cognitive State Decoding [0.0]
本研究は、認知的要求タスクに基づく、個人の脳の指紋と認知状態に関する最近の研究に基づいている。
提案手法は、fMRIスキャンの被検体の識別と、前例のない被検体の認知状態の分類の両方において、最大99%の精度を達成している。
論文 参考訳(メタデータ) (2022-11-14T16:41:51Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - An Investigation on Non-Invasive Brain-Computer Interfaces: Emotiv Epoc+
Neuroheadset and Its Effectiveness [0.7734726150561089]
人間の脳から直接人間の音声を、Facebook Reality Labとカリフォルニア大学サンフランシスコ校が導入したデジタルスクリーンにデコードする。
そこで我々は,脳-機械インタフェース(BMI)アプローチを用いて,ヒト脳を制御するビジョンプロジェクトについて検討した。
我々は、非侵襲的、挿入可能、低コストのBCIアプローチが、身体麻痺の患者だけでなく、脳を理解するための代替手段の焦点となると想定している。
論文 参考訳(メタデータ) (2022-06-24T05:45:48Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z) - GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion
Recognition [48.02958969607864]
本稿では,脳波感情認識のためのグラフベースマルチタスク自己教師学習モデル(GMSS)を提案する。
複数のタスクから同時に学習することで、GMSSはすべてのタスクをキャプチャする表現を見つけることができる。
SEED、SEED-IV、MPEDデータセットの実験により、提案モデルが脳波の感情信号に対するより差別的で一般的な特徴を学習する際、顕著な利点があることが示されている。
論文 参考訳(メタデータ) (2022-04-12T03:37:21Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。