論文の概要: Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies
- arxiv url: http://arxiv.org/abs/2401.10348v1
- Date: Thu, 18 Jan 2024 19:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 17:42:27.600327
- Title: Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies
- Title(参考訳): 機能接続研究におけるゲートグラフトランスフォーマによる汎用知性の検討
- Authors: Gang Qu, Anton Orlichenko, Junqi Wang, Gemeng Zhang, Li Xiao, Aiying
Zhang, Zhengming Ding, Yu-Ping Wang
- Abstract要約: Gated Graph Transformer (GGT) フレームワークは,機能的接続性(FC)に基づく認知的メトリクスの予測を目的としている
フィラデルフィア神経発達コホート(PNC)に関する実証的検証は,我々のモデルにおいて優れた予測能力を示している。
- 参考スコア(独自算出の注目度): 39.82681427764513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional connectivity (FC) as derived from fMRI has emerged as a pivotal
tool in elucidating the intricacies of various psychiatric disorders and
delineating the neural pathways that underpin cognitive and behavioral dynamics
inherent to the human brain. While Graph Neural Networks (GNNs) offer a
structured approach to represent neuroimaging data, they are limited by their
need for a predefined graph structure to depict associations between brain
regions, a detail not solely provided by FCs. To bridge this gap, we introduce
the Gated Graph Transformer (GGT) framework, designed to predict cognitive
metrics based on FCs. Empirical validation on the Philadelphia
Neurodevelopmental Cohort (PNC) underscores the superior predictive prowess of
our model, further accentuating its potential in identifying pivotal neural
connectivities that correlate with human cognitive processes.
- Abstract(参考訳): fMRIから派生した機能的接続(FC)は、様々な精神疾患の複雑さを解明し、人間の脳に固有の認知と行動のダイナミクスの基盤となる神経経路を規定する重要なツールとして登場した。
グラフニューラルネットワーク(gnns)は、神経画像データを表現するための構造化アプローチを提供するが、それらは、fcsのみが提供する詳細ではなく、脳領域間の関連を記述する事前定義されたグラフ構造の必要性によって制限される。
このギャップを埋めるために、FCに基づいて認知メトリクスを予測するように設計されたGated Graph Transformer(GGT)フレームワークを導入する。
フィラデルフィア神経発達コホート(pnc)の実証的検証は、我々のモデルの優れた予測能力を強調し、人間の認知過程と相関する重要な神経結合性を特定する可能性をさらに強調する。
関連論文リスト
- NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes [4.362614418491178]
本稿では, FCのユビキタスインスタンスが, SCによって物理的に配線された神経経路(デトゥール)によってどのようにサポートされているかを明らかにするために, トポロジカルデトゥールの概念を導入する。
機械学習のclich'eでは、SC-FCカップリングの基礎となるマルチホップデトゥール経路により、新しいマルチヘッド自己保持機構を考案することができる。
バイオインスパイアされたニューロパス(NeuroPath)と呼ばれる深層モデルを提案し,これまでにない量のニューロイメージから有意な結合性特徴表現を求める。
論文 参考訳(メタデータ) (2024-09-26T03:40:12Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Learning to Model the Relationship Between Brain Structural and
Functional Connectomes [16.096428756895918]
脳目的接続(SC)と機能接続(FC)の関係をモデル化するグラフ表現学習フレームワークを開発した。
トレーニング可能なグラフ畳み込みエンコーダは、実際の神経通信を模倣する脳の領域間の相互作用をキャプチャする。
実験では、学習した表現が、被験者の脳ネットワークの本質的な特性から貴重な情報を取得することを示した。
論文 参考訳(メタデータ) (2021-12-18T11:23:55Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
本稿では,脳コネクトームの動的グラフ表現を時間的注意とともに学習するSTAGINを提案する。
HCP-RestとHCP-Taskデータセットの実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-27T23:06:50Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
神経科学における中心的な問題は、脳内の自律的な動的相互作用が、比較的静的なバックボーンにどのように現れるかである。
構造解剖学的レイアウトに基づく機能的相互作用を記述するグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々は,GNNがデータの長期的依存関係をキャプチャし,大規模ネットワークの解析までスケールアップ可能であることを示す。
論文 参考訳(メタデータ) (2020-10-14T15:01:21Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
BOLD時系列の短いサブシーケンスに基づいて、時空間グラフ畳み込みネットワーク(ST-GCN)を訓練し、機能接続の非定常特性をモデル化する。
St-GCNはBOLD信号に基づいて性別や年齢を予測する一般的な手法よりもはるかに正確である。
論文 参考訳(メタデータ) (2020-03-24T01:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。