Photonic Supercoupling in Silicon Topological Waveguides
- URL: http://arxiv.org/abs/2401.10508v1
- Date: Fri, 19 Jan 2024 05:55:23 GMT
- Title: Photonic Supercoupling in Silicon Topological Waveguides
- Authors: Ridong Jia, Yi Ji Tan, Nikhil Navaratna, Abhishek Kumar, Ranjan Singh
- Abstract summary: We report the discovery of photonic supercoupling in a topological valley Hall pair of waveguides.
Experimentally, we realize ultra-high coupling ratios between waveguides through valley-conserved vortex flow of electromagnetic energy.
- Score: 4.884380134437934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electromagnetic wave coupling between photonic systems relies on the
evanescent field typically confined within a single wavelength. Extending
evanescent coupling distance requires low refractive index contrast and perfect
momentum matching for achieving a large coupling ratio. Here, we report the
discovery of photonic supercoupling in a topological valley Hall pair of
waveguides, showing a substantial improvement in coupling efficiency across
multiple wavelengths. Experimentally, we realize ultra-high coupling ratios
between waveguides through valley-conserved vortex flow of electromagnetic
energy, attaining 95% coupling efficiency for separations of up to three
wavelengths. This demonstration of photonic supercoupling in topological
systems significantly extends the coupling distance between on-chip waveguides
and components, paving the path for the development of supercoupled photonic
integrated devices, optical sensing, and telecommunications.
Related papers
- Long-distance strong coupling of magnon and photon: Effect of multi-mode waveguide [4.586134147113211]
We study long-distance coupling of magnon and photon mediated by a multi-mode waveguide.
Our results pave the way for understanding the long-distance coherence and designing the magnon-based distributed quantum networks.
arXiv Detail & Related papers (2024-09-03T09:29:26Z) - Spectral signature of high-order photon processes mediated by
Cooper-pair pairing [0.0]
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
This work explores a new regime of high-order photon interactions in microwave quantum optics, with applications ranging from multi-photon quantum logic to the study of highly correlated microwave radiation.
arXiv Detail & Related papers (2023-12-22T21:29:25Z) - Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom [55.2480439325792]
We show that after transmission of a short few-photon pulse, the final state of the atom and all the photons is a genuine multipartite entangled state belonging to the W class.
The parameters of the input pulse are optimized to maximize the efficiency of three- and four-partite W-state production.
arXiv Detail & Related papers (2023-09-25T09:06:28Z) - Single-photon scattering in a giant-molecule waveguide-QED system [5.826796031213696]
We study the coherent single-photon scattering in a one-dimensional waveguide coupled to a giant artificial molecule consisting of two coupled giant atoms.
We obtain the exact expressions of the single-photon transmission and reflection amplitudes with the real-space approach.
This paper will pave the way for the study of controllable single-photon devices based on the giant-molecule waveguide-QED systems.
arXiv Detail & Related papers (2022-03-15T12:01:03Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Engineering strong chiral light-matter interactions in a
waveguide-coupled nanocavity [0.0]
In the solid state, quantum emitters commonly possess circularly polarised optical transitions with spin-dependent handedness.
We demonstrate that spin-dependent chiral coupling can be realised by embedding such an emitter in a waveguide-coupled nanocavity.
arXiv Detail & Related papers (2021-08-03T12:55:49Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.