PuriDefense: Randomized Local Implicit Adversarial Purification for
Defending Black-box Query-based Attacks
- URL: http://arxiv.org/abs/2401.10586v1
- Date: Fri, 19 Jan 2024 09:54:23 GMT
- Title: PuriDefense: Randomized Local Implicit Adversarial Purification for
Defending Black-box Query-based Attacks
- Authors: Ping Guo, Zhiyuan Yang, Xi Lin, Qingchuan Zhao, Qingfu Zhang
- Abstract summary: Black-box query-based attacks threaten Machine Learning as a Service (ML) systems.
We propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost.
Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications.
- Score: 15.842917276255141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Black-box query-based attacks constitute significant threats to Machine
Learning as a Service (MLaaS) systems since they can generate adversarial
examples without accessing the target model's architecture and parameters.
Traditional defense mechanisms, such as adversarial training, gradient masking,
and input transformations, either impose substantial computational costs or
compromise the test accuracy of non-adversarial inputs. To address these
challenges, we propose an efficient defense mechanism, PuriDefense, that
employs random patch-wise purifications with an ensemble of lightweight
purification models at a low level of inference cost. These models leverage the
local implicit function and rebuild the natural image manifold. Our theoretical
analysis suggests that this approach slows down the convergence of query-based
attacks by incorporating randomness into purifications. Extensive experiments
on CIFAR-10 and ImageNet validate the effectiveness of our proposed
purifier-based defense mechanism, demonstrating significant improvements in
robustness against query-based attacks.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
We analyze attack techniques and propose a robust defense approach.
We successfully reduce model confidence by over 20% using adversarial patch attacks that exploit object shape, texture and position.
Our inpainting defense approach significantly enhances model resilience, achieving high accuracy and reliable localization despite the adversarial attacks.
arXiv Detail & Related papers (2024-03-04T13:32:48Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
Deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify.
We propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time.
Our method effectively enhances the model's resilience against both score-based and decision-based black-box attacks.
arXiv Detail & Related papers (2023-10-01T03:53:23Z) - Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections [12.807619042576018]
We propose a novel test-time defense strategy called Robust Feature Inference (RFI)
RFI is easy to integrate with any existing (robust) training procedure without additional test-time computation.
We show that RFI improves robustness across adaptive and transfer attacks consistently.
arXiv Detail & Related papers (2023-07-21T16:18:58Z) - Carefully Blending Adversarial Training and Purification Improves Adversarial Robustness [1.2289361708127877]
CARSO is able to defend itself against adaptive end-to-end white-box attacks devised for defences.
Our method improves by a significant margin the state-of-the-art for CIFAR-10, CIFAR-100, and TinyImageNet-200.
arXiv Detail & Related papers (2023-05-25T09:04:31Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.