Recent Advances in Named Entity Recognition: A Comprehensive Survey and Comparative Study
- URL: http://arxiv.org/abs/2401.10825v2
- Date: Mon, 11 Nov 2024 15:45:02 GMT
- Title: Recent Advances in Named Entity Recognition: A Comprehensive Survey and Comparative Study
- Authors: Imed Keraghel, Stanislas Morbieu, Mohamed Nadif,
- Abstract summary: We present an overview of recent popular approaches to NER.
We discuss reinforcement learning and graph-based approaches, highlighting their role in enhancing NER performance.
We evaluate the performance of the main NER implementations on a variety of datasets with differing characteristics.
- Score: 8.91661466156389
- License:
- Abstract: Named Entity Recognition seeks to extract substrings within a text that name real-world objects and to determine their type (for example, whether they refer to persons or organizations). In this survey, we first present an overview of recent popular approaches, including advancements in Transformer-based methods and Large Language Models (LLMs) that have not had much coverage in other surveys. In addition, we discuss reinforcement learning and graph-based approaches, highlighting their role in enhancing NER performance. Second, we focus on methods designed for datasets with scarce annotations. Third, we evaluate the performance of the main NER implementations on a variety of datasets with differing characteristics (as regards their domain, their size, and their number of classes). We thus provide a deep comparison of algorithms that have never been considered together. Our experiments shed some light on how the characteristics of datasets affect the behavior of the methods we compare.
Related papers
- A Deep Features-Based Approach Using Modified ResNet50 and Gradient Boosting for Visual Sentiments Classification [1.2434714657059942]
This research develops a fusion of deep learning and machine learning algorithms.
Deep feature-based method for multiclass classification has been used to extract deep features from modified ResNet50.
gradient boosting algorithm has been used to classify photos containing emotional content.
arXiv Detail & Related papers (2024-08-15T04:18:40Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NER model has achieved promising performance on standard NER benchmarks.
Recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition.
We propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective.
arXiv Detail & Related papers (2022-04-09T05:18:20Z) - Data-Centric Machine Learning in the Legal Domain [0.2624902795082451]
This paper explores how changes in a data set influence the measured performance of a model.
Using three publicly available data sets from the legal domain, we investigate how changes to their size, the train/test splits, and the human labelling accuracy impact the performance.
The observed effects are surprisingly pronounced, especially when the per-class performance is considered.
arXiv Detail & Related papers (2022-01-17T23:05:14Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - A Critical Assessment of State-of-the-Art in Entity Alignment [1.7725414095035827]
We investigate two state-of-the-art (SotA) methods for the task of Entity Alignment in Knowledge Graphs.
We first carefully examine the benchmarking process and identify several shortcomings, which make the results reported in the original works not always comparable.
arXiv Detail & Related papers (2020-10-30T15:09:19Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.