論文の概要: Ensembler: Protect Collaborative Inference Privacy from Model Inversion Attack via Selective Ensemble
- arxiv url: http://arxiv.org/abs/2401.10859v2
- Date: Mon, 23 Dec 2024 06:46:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:10.369345
- Title: Ensembler: Protect Collaborative Inference Privacy from Model Inversion Attack via Selective Ensemble
- Title(参考訳): Ensembler:Selective Ensembleによるモデル反転攻撃から協調推論プライバシを保護する
- Authors: Dancheng Liu, Chenhui Xu, Jiajie Li, Amir Nassereldine, Jinjun Xiong,
- Abstract要約: エンサンブラ(Ensembler)は、敵によるモデル反転攻撃の実施の難しさを高めるために設計されたフレームワークである。
実験により,クライアントがネットワークの1層のみをローカルに保持している場合でも,エンサンブラはリコンストラクション攻撃から入力イメージを効果的に保護できることを示した。
- 参考スコア(独自算出の注目度): 17.410461161197155
- License:
- Abstract: For collaborative inference through a cloud computing platform, it is sometimes essential for the client to shield its sensitive information from the cloud provider. In this paper, we introduce Ensembler, an extensible framework designed to substantially increase the difficulty of conducting model inversion attacks by adversarial parties. Ensembler leverages selective model ensemble on the adversarial server to obfuscate the reconstruction of the client's private information. Our experiments demonstrate that Ensembler can effectively shield input images from reconstruction attacks, even when the client only retains one layer of the network locally. Ensembler significantly outperforms baseline methods by up to 43.5% in structural similarity while only incurring 4.8% time overhead during inference.
- Abstract(参考訳): クラウドコンピューティングプラットフォームを通じた協調推論には、クライアントがクラウドプロバイダから機密情報を保護することが不可欠である場合もあります。
本稿では,対戦相手によるモデル反転攻撃の実施の難しさを大幅に向上する拡張可能なフレームワークであるEnsemblerを紹介する。
Ensemblerは、クライアントのプライベート情報の再構築を難読化するために、敵サーバ上の選択的モデルアンサンブルを利用する。
実験により,クライアントがネットワークの1層のみをローカルに保持している場合でも,エンサンブラはリコンストラクション攻撃から入力イメージを効果的に保護できることを示した。
アンサンブラは、推論中に4.8%の時間オーバーヘッドしか発生しないが、構造的類似性において、ベースライン法を最大43.5%上回っている。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - On the Embedding Collapse when Scaling up Recommendation Models [53.66285358088788]
埋め込み崩壊現象をスケーラビリティの阻害とみなし、埋め込み行列は低次元の部分空間を占有する傾向にある。
本稿では,組込み集合固有の相互作用モジュールを組み込んで,多様性を持つ組込み集合を学習する,単純かつ効果的な組込み設計を提案する。
論文 参考訳(メタデータ) (2023-10-06T17:50:38Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
セマンティックセグメンテーション手法の堅牢性を改善するための新しい手法を提案する。
我々は,現実的で可視な摂動画像を生成するために,新しい条件付き生成対向ネットワークであるRobustaを設計した。
我々の結果は、このアプローチが安全クリティカルなアプリケーションに有用である可能性を示唆している。
論文 参考訳(メタデータ) (2023-08-01T10:02:26Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Adversarial Representation Sharing: A Quantitative and Secure
Collaborative Learning Framework [3.759936323189418]
コミュニケーションのオーバーヘッドが低く,タスク依存度が低いため,共同学習において表現学習には独特なアドバンテージがあることがわかった。
ARSは、ユーザがモデルを訓練するためにデータの表現を共有する協調学習フレームワークである。
我々は,本機構がモデル逆攻撃に対して有効であることを実証し,プライバシとユーティリティのバランスを実現する。
論文 参考訳(メタデータ) (2022-03-27T13:29:15Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
群衆のカウントは、物理的な世界の敵の例に弱い。
本稿では,モデル間での知覚的特徴の共有を学習するためのPAP(Perceptual Adrial Patch)生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:51:39Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Contextual Fusion For Adversarial Robustness [0.0]
ディープニューラルネットワークは、通常、1つの特定の情報ストリームを処理し、様々な種類の敵の摂動に影響を受けやすいように設計されている。
そこで我々はPlaces-CNNとImagenet-CNNから並列に抽出した背景特徴と前景特徴を組み合わせた融合モデルを開発した。
グラデーションをベースとした攻撃では,フュージョンは乱れのないデータの性能を低下させることなく,分類の大幅な改善を可能にする。
論文 参考訳(メタデータ) (2020-11-18T20:13:23Z) - Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise [1.976652238476722]
我々はメタ最適化器を訓練し、敵対的な例を使ってモデルを堅牢に最適化することを学び、学習した知識を新しいモデルに転送することができる。
実験の結果、メタ最適化は異なるアーキテクチャやデータセット間で一貫性があることが示され、敵の脆弱性を自動的にパッチすることができることが示唆された。
論文 参考訳(メタデータ) (2020-08-12T11:44:01Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
対人学習は、対人摂動に対する既存の方法の感受性を回避できる手法の1つとして登場した。
安全クリティカルなアプリケーションでは、攻撃者は様々な敵を採用してシステムを騙すことができるため、これらの手法は極端に便利である。
本稿では,複数種類の攻撃に対するモデルの堅牢性を改善するために,ノイズ発生を明示的に学習するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T10:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。