Ensembler: Protect Collaborative Inference Privacy from Model Inversion Attack via Selective Ensemble
- URL: http://arxiv.org/abs/2401.10859v2
- Date: Mon, 23 Dec 2024 06:46:18 GMT
- Title: Ensembler: Protect Collaborative Inference Privacy from Model Inversion Attack via Selective Ensemble
- Authors: Dancheng Liu, Chenhui Xu, Jiajie Li, Amir Nassereldine, Jinjun Xiong,
- Abstract summary: Ensembler is a framework designed to increase the difficulty of conducting model inversion attacks by adversarial parties.<n>Our experiments demonstrate that Ensembler can effectively shield input images from reconstruction attacks, even when the client only retains one layer of the network locally.
- Score: 17.410461161197155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For collaborative inference through a cloud computing platform, it is sometimes essential for the client to shield its sensitive information from the cloud provider. In this paper, we introduce Ensembler, an extensible framework designed to substantially increase the difficulty of conducting model inversion attacks by adversarial parties. Ensembler leverages selective model ensemble on the adversarial server to obfuscate the reconstruction of the client's private information. Our experiments demonstrate that Ensembler can effectively shield input images from reconstruction attacks, even when the client only retains one layer of the network locally. Ensembler significantly outperforms baseline methods by up to 43.5% in structural similarity while only incurring 4.8% time overhead during inference.
Related papers
- SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in Split Learning (Full Version) [53.16528046390881]
Split Learning (SL) is a distributed deep learning approach enabling multiple clients and a server to collaboratively train and infer on a shared deep neural network (DNN)
This paper presents SafeSplit, the first defense against client-side backdoor attacks in Split Learning (SL)
It uses a two-fold analysis to identify client-induced changes and detect poisoned models.
arXiv Detail & Related papers (2025-01-11T22:20:20Z) - Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only.
Our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side.
Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part.
arXiv Detail & Related papers (2024-11-15T11:06:24Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - A Stealthy Wrongdoer: Feature-Oriented Reconstruction Attack against Split Learning [14.110303634976272]
Split Learning (SL) is a distributed learning framework renowned for its privacy-preserving features and minimal computational requirements.
Previous research consistently highlights the potential privacy breaches in SL systems by server adversaries reconstructing training data.
This paper introduces a new semi-honest Data Reconstruction Attack on SL, named Feature-Oriented Reconstruction Attack (FORA)
arXiv Detail & Related papers (2024-05-07T08:38:35Z) - On the Embedding Collapse when Scaling up Recommendation Models [53.66285358088788]
We identify the embedding collapse phenomenon as the inhibition of scalability, wherein the embedding matrix tends to occupy a low-dimensional subspace.
We propose a simple yet effective multi-embedding design incorporating embedding-set-specific interaction modules to learn embedding sets with large diversity.
arXiv Detail & Related papers (2023-10-06T17:50:38Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - FLVoogd: Robust And Privacy Preserving Federated Learning [12.568409209047505]
We proposeoogd, an updated federated learning method in which servers and clients collaboratively eliminate Byzantine attacks while preserving privacy.
Servers use automatic Density-based Spatial Clustering of Applications with Noise (DBSCAN) combined with S2PC to cluster the benign majority without acquiring sensitive personal information.
Our framework is automatic and adaptive that servers/clients don't need to tune the parameters during the training.
arXiv Detail & Related papers (2022-06-24T08:48:15Z) - Adversarial Representation Sharing: A Quantitative and Secure
Collaborative Learning Framework [3.759936323189418]
We find representation learning has unique advantages in collaborative learning due to the lower communication overhead and task-independency.
We present ARS, a collaborative learning framework wherein users share representations of data to train models.
We demonstrate that our mechanism is effective against model inversion attacks, and achieves a balance between privacy and utility.
arXiv Detail & Related papers (2022-03-27T13:29:15Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
Privacy-preserving federated learning enables a population of distributed clients to jointly learn a shared model.
We present an efficient mechanism based on oblivious distributed differential privacy that is the first to protect against such client collusion.
We conclude with empirical analysis of the protocol's execution speed, learning accuracy, and privacy performance on two data sets.
arXiv Detail & Related papers (2022-02-20T19:52:53Z) - Efficient passive membership inference attack in federated learning [12.878319040684211]
In cross-device federated learning (FL) setting, clients such as mobiles cooperate with the server to train a global machine learning model, while maintaining their data locally.
Recent work shows that client's private information can still be disclosed to an adversary who just eavesdrops the messages exchanged between the client and the server.
We propose a new passive inference attack that requires much less power and memory than existing methods.
arXiv Detail & Related papers (2021-10-31T08:21:23Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
Crowd counting is vulnerable to adversarial examples in the physical world.
This paper proposes the Perceptual Adrial Patch (PAP) generation framework to learn the shared perceptual features between models.
arXiv Detail & Related papers (2021-09-16T13:51:39Z) - UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label
Inference Attacks Against Split Learning [0.0]
Split learning framework aims to split up the model among the client and the server.
We show that split learning paradigm can pose serious security risks and provide no more than a false sense of security.
arXiv Detail & Related papers (2021-08-20T07:39:16Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Contextual Fusion For Adversarial Robustness [0.0]
Deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations.
We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN.
For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data.
arXiv Detail & Related papers (2020-11-18T20:13:23Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise [1.976652238476722]
We train a meta-optimizer which learns to robustly optimize a model using adversarial examples and is able to transfer the knowledge learned to new models.
Experimental results show the meta-optimizer is consistent across different architectures and data sets, suggesting it is possible to automatically patch adversarial vulnerabilities.
arXiv Detail & Related papers (2020-08-12T11:44:01Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations.
In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system.
We propose a novel meta-learning framework that explicitly learns to generate noise to improve the model's robustness against multiple types of attacks.
arXiv Detail & Related papers (2020-06-22T10:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.