論文の概要: AI Revolution on Chat Bot: Evidence from a Randomized Controlled
Experiment
- arxiv url: http://arxiv.org/abs/2401.10956v1
- Date: Fri, 19 Jan 2024 05:54:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 18:41:37.595274
- Title: AI Revolution on Chat Bot: Evidence from a Randomized Controlled
Experiment
- Title(参考訳): チャットボットのAI革命:ランダムに制御された実験からの証拠
- Authors: Sida Peng, Wojciech Swiatek, Allen Gao, Paul Cullivan, Haoge Chang
- Abstract要約: 大規模言語モデル(LLM)はChatGPT-4を例に大きく注目されている。
近年の進歩にもかかわらず、現実的な設定でLLMベースのツールを応用したフィールド実験は限られている。
本稿では,LLMツールを用いた情報検索支援サービスにおけるフィールドランダム化制御試験の有効性を評価する。
- 参考スコア(独自算出の注目度): 11.626057561212694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, generative AI has undergone major advancements,
demonstrating significant promise in augmenting human productivity. Notably,
large language models (LLM), with ChatGPT-4 as an example, have drawn
considerable attention. Numerous articles have examined the impact of LLM-based
tools on human productivity in lab settings and designed tasks or in
observational studies. Despite recent advances, field experiments applying
LLM-based tools in realistic settings are limited. This paper presents the
findings of a field randomized controlled trial assessing the effectiveness of
LLM-based tools in providing unmonitored support services for information
retrieval.
- Abstract(参考訳): 近年、ジェネレーティブAIは大きな進歩を遂げており、人間の生産性を高める上で大きな可能性を秘めている。
特に、ChatGPT-4を例として、大きな言語モデル(LLM)が注目されている。
実験室の設定や設計作業や観察研究におけるLLMベースのツールが人間の生産性に与える影響について,多くの論文が検討されている。
近年の進歩にもかかわらず、現実的な設定でLLMベースのツールを応用したフィールド実験は限られている。
本稿では,LLMツールを用いた情報検索支援サービスにおけるフィールドランダム化制御試験の有効性を評価する。
関連論文リスト
- AD-LLM: Benchmarking Large Language Models for Anomaly Detection [50.57641458208208]
本稿では,大規模な言語モデルが異常検出にどのように役立つかを評価する最初のベンチマークであるAD-LLMを紹介する。
我々は、ゼロショット検出、LLMの事前訓練された知識を用いて、タスク固有のトレーニングなしでADを実行すること、データ拡張、ADモデルを改善するために合成データとカテゴリ記述を生成すること、LLMを使用して教師なしADモデルを提案するモデル選択の3つの主要なタスクについて検討する。
論文 参考訳(メタデータ) (2024-12-15T10:22:14Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - Learning to Ask: When LLM Agents Meet Unclear Instruction [55.65312637965779]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - Active Testing of Large Language Model via Multi-Stage Sampling [17.89896012553348]
AcTracerは,大規模言語モデル(LLM)に適した,アクティブなテストフレームワークである。
ほぼ最適な性能推定を達成するために、戦略的にテストデータの小さなサブセットを選択する。
実験の結果,AcTracerは既存手法と比較して最先端の性能を達成できた。
論文 参考訳(メタデータ) (2024-08-07T06:17:48Z) - What Affects the Stability of Tool Learning? An Empirical Study on the Robustness of Tool Learning Frameworks [33.51887014808227]
本稿では,ツール学習フレームワークの性能に及ぼす内部要因と外部要因の影響について検討する。
今後の研究には、LCMが試行錯誤の増加から大きな恩恵を受けることができるという観察など、洞察に富んだ結論がいくつか見出される。
論文 参考訳(メタデータ) (2024-07-03T11:06:05Z) - Characteristic AI Agents via Large Language Models [40.10858767752735]
本研究は,特有なAIエージェント構築における大規模言語モデルの性能調査に焦点をあてる。
character100''と呼ばれるデータセットがこのベンチマークのために構築されており、ウィキペディアの言語モデルでロールプレイを行う最も訪問者の多い人々で構成されている。
実験結果から,LLMの能力向上に向けた潜在的な方向性が明らかにされた。
論文 参考訳(メタデータ) (2024-03-19T02:25:29Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
既存の大規模言語モデル(LLM)は30%から60%の範囲でしか正当性に至らない。
試行錯誤(STE)を模擬したツール拡張LDMの生物学的なインスピレーション法を提案する。
STEは、試行錯誤、想像力、記憶という、生物学的システムにおけるツール使用行動の成功のための3つの重要なメカニズムを編成する。
論文 参考訳(メタデータ) (2024-03-07T18:50:51Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - LLMs for Science: Usage for Code Generation and Data Analysis [0.07499722271664144]
大規模言語モデル (LLMs) は、今日の作業環境の多くの領域で生産性の向上を図っている。
LLMのポテンシャルが研究の実践においてどのように実現されるのかは、いまだ不明である。
論文 参考訳(メタデータ) (2023-11-28T12:29:33Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。