Continuous Monitoring of Blood Pressure with Evidential Regression
- URL: http://arxiv.org/abs/2102.03542v1
- Date: Sat, 6 Feb 2021 09:09:31 GMT
- Title: Continuous Monitoring of Blood Pressure with Evidential Regression
- Authors: Hyeongju Kim, Woo Hyun Kang, Hyeonseung Lee, Nam Soo Kim
- Abstract summary: Photoplethysmogram (MIC) signal-based blood pressure estimation is a promising candidate for modern BP measurements.
The proposed method provides the reliability of the predicted BP by estimating its uncertainty to help diagnose medical condition.
- Score: 19.92542487970484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photoplethysmogram (PPG) signal-based blood pressure (BP) estimation is a
promising candidate for modern BP measurements, as PPG signals can be easily
obtained from wearable devices in a non-invasive manner, allowing quick BP
measurement. However, the performance of existing machine learning-based BP
measuring methods still fall behind some BP measurement guidelines and most of
them provide only point estimates of systolic blood pressure (SBP) and
diastolic blood pressure (DBP). In this paper, we present a cutting-edge method
which is capable of continuously monitoring BP from the PPG signal and
satisfies healthcare criteria such as the Association for the Advancement of
Medical Instrumentation (AAMI) and the British Hypertension Society (BHS)
standards. Furthermore, the proposed method provides the reliability of the
predicted BP by estimating its uncertainty to help diagnose medical condition
based on the model prediction. Experiments on the MIMIC II database verify the
state-of-the-art performance of the proposed method under several metrics and
its ability to accurately represent uncertainty in prediction.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
Diffusion-Based Purification (DBP) has emerged as an effective defense mechanism against adversarial attacks.
In this paper, we argue that the inherentity in the DBP process is the primary driver of its robustness.
arXiv Detail & Related papers (2024-04-22T16:10:38Z) - Exploring the limitations of blood pressure estimation using the photoplethysmography signal [0.0]
Photoplemography (N- Siamese) and Invasive Arterial Blood Pressure (N-IABP) signals are compared.
N-IABP signals meet with AAMI standards for both Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)
Our findings highlight the potential and limitations of employing PPG for BP estimation.
arXiv Detail & Related papers (2024-04-09T14:08:23Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
This study introduces four innovative strategies to enhance smartphone-based photoplethysmography for blood pressure estimation (SPW-BP)
We employ often-neglected data-quality improvement techniques, such as height normalization, corrupt data removal, and boundary signal reconstruction.
Correlation and SHAP analysis identified key features for improving BP estimation.
However, Bland-Altman analysis revealed systematic biases, and MAE analysis showed that the results did not meet AAMI and BHS accuracy standards.
arXiv Detail & Related papers (2024-01-20T05:05:17Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
We propose a decoder for QLDPC codes based on BP guided decimation (BPGD)
BPGD significantly reduces the BP failure rate due to non-convergence.
arXiv Detail & Related papers (2023-12-18T05:58:07Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - A Survey on Blood Pressure Measurement Technologies: Addressing
Potential Sources of Bias [4.0527913281804135]
Blood pressure (BP) monitoring plays a crucial role in the prevention, diagnosis, treatment, and management of cardiovascular diseases.
Recent guidelines advocate for regular BP monitoring as part of regular clinical visits or even at home.
BP measurements can demonstrate substantial biases and variances due to factors such as measurement and device errors, demographics, and body habitus.
arXiv Detail & Related papers (2023-06-14T11:51:11Z) - BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure
Estimation using Photoplethysmogram [0.06524460254566904]
Blood pressure is one of the most influential bio-markers for cardiovascular diseases and stroke.
Current cuffless approaches to continuous BP monitoring involve explicit feature engineering surrounding Photoplethysmogram signals.
We present an end-to-end deep learning solution, BP-Net, that uses PPG waveform to estimate Systolic BP (SBP), Mean Average Pressure (MAP), and Diastolic BP (DBP) through intermediate continuous Arterial BP (ABP) waveform.
arXiv Detail & Related papers (2021-11-29T14:43:58Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions.
We propose an advanced data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals.
arXiv Detail & Related papers (2021-07-30T22:45:34Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
Office Blood Pressure Measurement (OBP) is a technique performed in-office with the sphygmomanometer, while Ambulatory Blood Pressure Monitoring (ABPM) is a technique that measures blood pressure during 24h.
The aim of this study is to examine the possible influence of sex on the discrepancies between OBP and ABPM in 872 subjects with known or suspected hypertension.
arXiv Detail & Related papers (2021-06-04T10:09:44Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.