Evaluating Driver Readiness in Conditionally Automated Vehicles from
Eye-Tracking Data and Head Pose
- URL: http://arxiv.org/abs/2401.11284v1
- Date: Sat, 20 Jan 2024 17:32:52 GMT
- Title: Evaluating Driver Readiness in Conditionally Automated Vehicles from
Eye-Tracking Data and Head Pose
- Authors: Mostafa Kazemi, Mahdi Rezaei, Mohsen Azarmi
- Abstract summary: In SAE Level 3 or partly automated vehicles, the driver needs to be available and ready to intervene when necessary.
This article presents a comprehensive analysis of driver readiness assessment by combining head pose features and eye-tracking data.
A Bidirectional LSTM architecture, combining both feature sets, achieves a mean absolute error of 0.363 on the DMD dataset.
- Score: 3.637162892228131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As automated driving technology advances, the role of the driver to resume
control of the vehicle in conditionally automated vehicles becomes increasingly
critical. In the SAE Level 3 or partly automated vehicles, the driver needs to
be available and ready to intervene when necessary. This makes it essential to
evaluate their readiness accurately. This article presents a comprehensive
analysis of driver readiness assessment by combining head pose features and
eye-tracking data. The study explores the effectiveness of predictive models in
evaluating driver readiness, addressing the challenges of dataset limitations
and limited ground truth labels. Machine learning techniques, including LSTM
architectures, are utilised to model driver readiness based on the
Spatio-temporal status of the driver's head pose and eye gaze. The experiments
in this article revealed that a Bidirectional LSTM architecture, combining both
feature sets, achieves a mean absolute error of 0.363 on the DMD dataset,
demonstrating superior performance in assessing driver readiness. The modular
architecture of the proposed model also allows the integration of additional
driver-specific features, such as steering wheel activity, enhancing its
adaptability and real-world applicability.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems [28.263763430300504]
We propose a data-driven car-following model that allows for adjusting driving discourtesy levels.
Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
arXiv Detail & Related papers (2024-06-23T15:04:07Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving [65.04871316921327]
This paper introduces a new autonomous driving system that enhances the performance and reliability of autonomous driving system.
DME-Driver utilizes a powerful vision language model as the decision-maker and a planning-oriented perception model as the control signal generator.
By leveraging this dataset, our model achieves high-precision planning accuracy through a logical thinking process.
arXiv Detail & Related papers (2024-01-08T03:06:02Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
We pioneer a novel behavior-aware trajectory prediction model (BAT)
Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules.
We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets.
arXiv Detail & Related papers (2023-12-11T13:27:51Z) - Assessing Drivers' Situation Awareness in Semi-Autonomous Vehicles: ASP
based Characterisations of Driving Dynamics for Modelling Scene
Interpretation and Projection [0.0]
We present a framework to asses how aware the driver is about the situation and to provide human-centred assistance.
The framework is developed as a modular system within the Robot Operating System (ROS) with modules for sensing the environment and the driver state.
A particular focus of this paper is on an Answer Set Programming (ASP) based approach for modelling and reasoning about the driver's interpretation and projection of the scene.
arXiv Detail & Related papers (2023-08-30T09:07:49Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
We develop and train take-over time (TOT) models that operate on mid and high-level features produced by computer vision algorithms operating on different driver-facing camera views.
We show that a TOT model supported by augmented data can be used to produce continuous estimates of take-over times without delay.
arXiv Detail & Related papers (2021-07-27T16:39:50Z) - Autonomous Vehicles that Alert Humans to Take-Over Controls: Modeling
with Real-World Data [11.007092387379076]
This study focuses on the development of contextual, semantically meaningful representations of the driver state.
We conduct a large-scale real-world controlled data study where participants are instructed to take-over control from an autonomous agent.
These take-over events are captured using multiple driver-facing cameras, which when labelled result in a dataset of control transitions and their corresponding take-over times (TOTs)
After augmenting this dataset, we develop and train TOT models that operate sequentially on low and mid-level features produced by computer vision algorithms operating on different driver-facing camera views.
arXiv Detail & Related papers (2021-04-23T09:16:53Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
This paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment.
Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge.
arXiv Detail & Related papers (2020-10-23T18:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.