Edge-Enabled Real-time Railway Track Segmentation
- URL: http://arxiv.org/abs/2401.11492v1
- Date: Sun, 21 Jan 2024 13:45:52 GMT
- Title: Edge-Enabled Real-time Railway Track Segmentation
- Authors: Chen Chenglin, Wang Fei, Yang Min, Qin Yong, Bai Yun
- Abstract summary: We propose an edge-enabled real-time railway track segmentation algorithm.
It is optimized to be suitable for edge applications by optimizing the network structure and quantizing the model after training.
Experimental results demonstrate that our enhanced algorithm achieves an accuracy level of 83.3%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and rapid railway track segmentation can assist automatic train
driving and is a key step in early warning to fixed or moving obstacles on the
railway track. However, certain existing algorithms tailored for track
segmentation often struggle to meet the requirements of real-time and
efficiency on resource-constrained edge devices. Considering this challenge, we
propose an edge-enabled real-time railway track segmentation algorithm, which
is optimized to be suitable for edge applications by optimizing the network
structure and quantizing the model after training. Initially, Ghost convolution
is introduced to reduce the complexity of the backbone, thereby achieving the
extraction of key information of the interested region at a lower cost. To
further reduce the model complexity and calculation, a new lightweight
detection head is proposed to achieve the best balance between accuracy and
efficiency. Subsequently, we introduce quantization techniques to map the
model's floating-point weights and activation values into lower bit-width
fixed-point representations, reducing computational demands and memory
footprint, ultimately accelerating the model's inference. Finally, we draw
inspiration from GPU parallel programming principles to expedite the
pre-processing and post-processing stages of the algorithm by doing parallel
processing. The approach is evaluated with public and challenging dataset
RailSem19 and tested on Jetson Nano. Experimental results demonstrate that our
enhanced algorithm achieves an accuracy level of 83.3% while achieving a
real-time inference rate of 25 frames per second when the input size is
480x480, thereby effectively meeting the requirements for real-time and
high-efficiency operation.
Related papers
- Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Adaptive Sampling for Deep Learning via Efficient Nonparametric Proxies [35.29595714883275]
We develop an efficient sketch-based approximation to the Nadaraya-Watson estimator.
Our sampling algorithm outperforms the baseline in terms of wall-clock time and accuracy on four datasets.
arXiv Detail & Related papers (2023-11-22T18:40:18Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
Event-based Graph Neural Networks generalize standard GNNs to process events as "evolving"-temporal graphs.
AEGNNs are easily trained on synchronous inputs and can be converted to efficient, "asynchronous" networks at test time.
arXiv Detail & Related papers (2022-03-31T16:21:12Z) - Error-Correcting Neural Networks for Semi-Lagrangian Advection in the
Level-Set Method [0.0]
We present a machine learning framework that blends image super-resolution technologies with scalar transport in the level-set method.
We investigate whether we can compute on-the-fly data-driven corrections to minimize numerical viscosity in the coarse-mesh evolution of an interface.
arXiv Detail & Related papers (2021-10-22T06:36:15Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCE is an automated simultaneous data-network co-optimization for efficient segmentation model training and inference.
It integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity.
Experiments and ablating studies demonstrate that DANCE can achieve "all-win" towards efficient segmentation.
arXiv Detail & Related papers (2021-07-16T04:58:58Z) - Scalable Optimal Transport in High Dimensions for Graph Distances,
Embedding Alignment, and More [7.484063729015126]
We propose two effective log-linear time approximations of the cost matrix for optimal transport.
These approximations enable general log-linear time algorithms for entropy-regularized OT that perform well even for the complex, high-dimensional spaces.
For graph distance regression we propose the graph transport network (GTN), which combines graph neural networks (GNNs) with enhanced Sinkhorn.
arXiv Detail & Related papers (2021-07-14T17:40:08Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - A Unified Light Framework for Real-time Fault Detection of Freight Train
Images [16.721758280029302]
Real-time fault detection for freight trains plays a vital role in guaranteeing the security and optimal operation of railway transportation.
Despite the promising results for deep learning based approaches, the performance of these fault detectors on freight train images are far from satisfactory in both accuracy and efficiency.
This paper proposes a unified light framework to improve detection accuracy while supporting a real-time operation with a low resource requirement.
arXiv Detail & Related papers (2021-01-31T05:10:20Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.