論文の概要: Continuous Field Reconstruction from Sparse Observations with Implicit
Neural Networks
- arxiv url: http://arxiv.org/abs/2401.11611v1
- Date: Sun, 21 Jan 2024 22:18:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 15:45:44.247708
- Title: Continuous Field Reconstruction from Sparse Observations with Implicit
Neural Networks
- Title(参考訳): 入射ニューラルネットワークによるスパース観測からの連続場再構成
- Authors: Xihaier Luo, Wei Xu, Yihui Ren, Shinjae Yoo, Balu Nadiga
- Abstract要約: この研究は、暗黙の神経表現を用いて物理場の連続的な表現を学ぶ新しいアプローチを示す。
実験により,提案手法は最近のINR法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 11.139052252214917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliably reconstructing physical fields from sparse sensor data is a
challenge that frequently arises in many scientific domains. In practice, the
process generating the data often is not understood to sufficient accuracy.
Therefore, there is a growing interest in using the deep neural network route
to address the problem. This work presents a novel approach that learns a
continuous representation of the physical field using implicit neural
representations (INRs). Specifically, after factorizing spatiotemporal
variability into spatial and temporal components using the separation of
variables technique, the method learns relevant basis functions from sparsely
sampled irregular data points to develop a continuous representation of the
data. In experimental evaluations, the proposed model outperforms recent INR
methods, offering superior reconstruction quality on simulation data from a
state-of-the-art climate model and a second dataset that comprises ultra-high
resolution satellite-based sea surface temperature fields.
- Abstract(参考訳): スパースセンサデータから物理フィールドを確実に再構築することは、多くの科学領域で頻繁に発生する課題である。
実際には、データを生成するプロセスはしばしば十分な精度で理解されていない。
そのため、この問題に対処するためにディープニューラルネットワークルートの利用に関心が高まっている。
本研究は,暗黙的神経表現(inrs)を用いた物理場の連続表現を学習する新しいアプローチを提案する。
具体的には、変数分離手法を用いて時空間変動を空間的および時間的成分に分解した後、疎くサンプリングされた不規則なデータ点から関連する基底関数を学習し、データの連続的な表現を開発する。
実験評価では,最新の気候モデルと,超高解像度衛星による海面温度場を含む2番目のデータセットのシミュレーションデータにおいて,inr法よりも優れた再現性を提供する。
関連論文リスト
- Neural Incremental Data Assimilation [8.817223931520381]
ニューラルネットワークによってパラメータ化された粗いガウス分布の列として物理系をモデル化する深層学習手法を提案する。
これにより、再構築エラーを最小限に抑えるためにエンドツーエンドで訓練された同化演算子を定義することができる。
本稿では,疎度観測によるカオス力学系へのアプローチについて述べるとともに,従来の変分データ同化法と比較する。
論文 参考訳(メタデータ) (2024-06-21T11:42:55Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
現在利用可能なニューラルネットワークベースのモデリングアプローチは、時間と空間でランダムに収集されたデータに直面したときに不足する。
そこで我々は,このようなランダムなサンプルデータを効果的に処理する新しい手法を開発した。
我々のモデルは、システムの力学と将来の観測のタイミングと位置の両方を予測するために、償却変分推論、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現といった技術を統合する。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
本稿では,Variデータ同化とディープラーニングの概念に基づくフレームワークを提案する。
この枠組みは、海面風速に関する高解像度のリッチインタイムを回復するために応用される。
論文 参考訳(メタデータ) (2023-12-14T13:40:39Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
本稿では,RecFNOという優れた性能とメッシュ転送性を備えたエンド・ツー・エンドの物理場再構成手法を提案する。
提案手法は, スパース観測から無限次元空間における流れと熱場への写像を学習することを目的としている。
流体力学および熱力学に関する実験により,提案手法は既存のPOD法およびCNN法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-20T07:20:22Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
ディープ・ラーニングは、粗い粒度のシミュレーションに基づいて科学的データを増やすのに使うことができる。
物理インフォームドラーニングにインスパイアされた、豊かで効率的な時間的超解像フレームワークを提案する。
その結果,提案手法の有効性と効率が,ベースラインアルゴリズムと比較して優れていることが示された。
論文 参考訳(メタデータ) (2022-08-02T13:57:35Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。