Subgroup analysis methods for time-to-event outcomes in heterogeneous
randomized controlled trials
- URL: http://arxiv.org/abs/2401.11842v2
- Date: Tue, 23 Jan 2024 08:47:47 GMT
- Title: Subgroup analysis methods for time-to-event outcomes in heterogeneous
randomized controlled trials
- Authors: Valentine Perrin, Nathan Noiry, Nicolas Loiseau, Alex Nowak
- Abstract summary: Non-significant randomized control trials can hide subgroups of good responders to experimental drugs.
We provide an open source Python package, available on Github, containing our generation process and our comprehensive benchmark framework.
- Score: 7.940293148084845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-significant randomized control trials can hide subgroups of good
responders to experimental drugs, thus hindering subsequent development.
Identifying such heterogeneous treatment effects is key for precision medicine
and many post-hoc analysis methods have been developed for that purpose. While
several benchmarks have been carried out to identify the strengths and
weaknesses of these methods, notably for binary and continuous endpoints,
similar systematic empirical evaluation of subgroup analysis for time-to-event
endpoints are lacking. This work aims to fill this gap by evaluating several
subgroup analysis algorithms in the context of time-to-event outcomes, by means
of three different research questions: Is there heterogeneity? What are the
biomarkers responsible for such heterogeneity? Who are the good responders to
treatment? In this context, we propose a new synthetic and semi-synthetic data
generation process that allows one to explore a wide range of heterogeneity
scenarios with precise control on the level of heterogeneity. We provide an
open source Python package, available on Github, containing our generation
process and our comprehensive benchmark framework. We hope this package will be
useful to the research community for future investigations of heterogeneity of
treatment effects and subgroup analysis methods benchmarking.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Causal Machine Learning for Moderation Effects [0.0]
We propose a new parameter, the balanced group average treatment effect (BGATE)
By taking the difference of two BGATEs, we can analyse heterogeneity more meaningfully than by comparing two GATEs.
Adding additional identifying assumptions allows specific balanced differences in treatment effects between groups to be interpreted causally.
arXiv Detail & Related papers (2024-01-16T11:34:59Z) - Combining propensity score methods with variational autoencoders for
generating synthetic data in presence of latent sub-groups [0.0]
Heterogeneity might be known, e.g., as indicated by sub-groups labels, or might be unknown and reflected only in properties of distributions, such as bimodality or skewness.
We investigate how such heterogeneity can be preserved and controlled when obtaining synthetic data from variational autoencoders (VAEs), i.e., a generative deep learning technique.
arXiv Detail & Related papers (2023-12-12T22:49:24Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Heterogeneous Datasets for Federated Survival Analysis Simulation [6.489759672413373]
This work proposes a novel technique for constructing realistic heterogeneous datasets by starting from existing non-federated datasets in a reproducible way.
Specifically, we provide two novel dataset-splitting algorithms based on the Dirichlet distribution to assign each data sample to a carefully chosen client.
The implementation of the proposed methods is publicly available in favor of and to encourage common practices to simulate federated environments for survival analysis.
arXiv Detail & Related papers (2023-01-28T11:37:07Z) - Composite Feature Selection using Deep Ensembles [130.72015919510605]
We investigate the problem of discovering groups of predictive features without predefined grouping.
We introduce a novel deep learning architecture that uses an ensemble of feature selection models to find predictive groups.
We propose a new metric to measure similarity between discovered groups and the ground truth.
arXiv Detail & Related papers (2022-11-01T17:49:40Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
We introduce Mycorrhiza, a machine learning approach for the genotype assignment problem.
Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples.
Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium.
arXiv Detail & Related papers (2020-10-14T02:36:27Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - A Novel Granular-Based Bi-Clustering Method of Deep Mining the
Co-Expressed Genes [76.84066556597342]
Bi-clustering methods are used to mine bi-clusters whose subsets of samples (genes) are co-regulated under their test conditions.
Unfortunately, traditional bi-clustering methods are not fully effective in discovering such bi-clusters.
We propose a novel bi-clustering method by involving here the theory of Granular Computing.
arXiv Detail & Related papers (2020-05-12T02:04:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.