論文の概要: Assessing the Efficacy of Deep Learning Approaches for Facial Expression Recognition in Individuals with Intellectual Disabilities
- arxiv url: http://arxiv.org/abs/2401.11877v2
- Date: Wed, 29 May 2024 14:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 23:40:54.831324
- Title: Assessing the Efficacy of Deep Learning Approaches for Facial Expression Recognition in Individuals with Intellectual Disabilities
- Title(参考訳): 知的障害者の表情認識における深層学習の有効性の評価
- Authors: F. Xavier Gaya-Morey, Silvia Ramis, Jose M. Buades-Rubio, Cristina Manresa-Yee,
- Abstract要約: 我々は、知的障害者の表情を認識するために、異なるアプローチで12の畳み込みニューラルネットワークを訓練する。
本研究は,ユーザ固有の訓練手法を用いて,この集団内での表情認識の必要性を示唆するものである。
- 参考スコア(独自算出の注目度): 0.7124736158080939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial expression recognition has gained significance as a means of imparting social robots with the capacity to discern the emotional states of users. The use of social robotics includes a variety of settings, including homes, nursing homes or daycare centers, serving to a wide range of users. Remarkable performance has been achieved by deep learning approaches, however, its direct use for recognizing facial expressions in individuals with intellectual disabilities has not been yet studied in the literature, to the best of our knowledge. To address this objective, we train a set of 12 convolutional neural networks in different approaches, including an ensemble of datasets without individuals with intellectual disabilities and a dataset featuring such individuals. Our examination of the outcomes, both the performance and the important image regions for the models, reveals significant distinctions in facial expressions between individuals with and without intellectual disabilities, as well as among individuals with intellectual disabilities. Remarkably, our findings show the need of facial expression recognition within this population through tailored user-specific training methodologies, which enable the models to effectively address the unique expressions of each user.
- Abstract(参考訳): 表情認識は、ユーザの感情状態を識別する能力を持つ社会ロボットを付与する手段として重要視されている。
社会ロボティクスの使用には、家庭、介護施設、保育所など様々な設定が含まれており、幅広い利用者に利用されている。
しかし,知的障害者の表情認識の直接的利用は,本研究ではまだ研究されていない。
この目的を達成するために、知的障害を持つ個人がいないデータセットの集合や、そのような個人を特徴とするデータセットを含む、さまざまなアプローチで12の畳み込みニューラルネットワークのセットをトレーニングする。
本研究の結果は, 知的障害者, 知的障害者, および, 知的障害者の間で, 表情に有意な差異が認められた。
注目すべきことに,本研究では,各利用者の表情を効果的に扱えるように調整したユーザ固有の訓練手法により,この集団内での表情認識の必要性が示された。
関連論文リスト
- CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Learning Graph Representation of Person-specific Cognitive Processes
from Audio-visual Behaviours for Automatic Personality Recognition [17.428626029689653]
本稿では,対象対象者固有の認知を,個人固有のCNNアーキテクチャの形で表現することを提案する。
各人物固有のCNNは、ニューラルアーキテクチャサーチ(NAS)と新しい適応損失関数によって探索される。
実験の結果,生成したグラフ表現は対象者の性格特性とよく関連していることがわかった。
論文 参考訳(メタデータ) (2021-10-26T11:04:23Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
顔認識タスクを解決するためのマルチリゾリューション手法を提案する。
私たちは、しばしば異なる解像度で画像が取得されるという観察を直感的に根拠としています。
我々は、Affect-in-the-Wild 2データセットに基づいてトレーニングされたSqueeze-and-Excitationブロックを備えたResNetのようなアーキテクチャを使用する。
論文 参考訳(メタデータ) (2021-03-09T21:21:02Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
本研究では,顔認識システムのセキュリティ脆弱性としての表情バイアスについて検討する。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
論文 参考訳(メタデータ) (2020-11-17T18:12:41Z) - Introducing Representations of Facial Affect in Automated Multimodal
Deception Detection [18.16596562087374]
自動偽造検知システムは、社会の健康、正義、安全を高めることができる。
本稿では,顔認識における顔の感情の次元表現力の新たな解析法を提案する。
私たちは、現実世界の、高額な法廷状況で、真実または偽装的にコミュニケーションする人々のビデオデータセットを使用しました。
論文 参考訳(メタデータ) (2020-08-31T05:12:57Z) - Occlusion-Adaptive Deep Network for Robust Facial Expression Recognition [56.11054589916299]
本研究では,隠蔽領域から腐敗した特徴を発見・破棄するためのランドマーク誘導型アテンションブランチを提案する。
注意マップが最初に作成され、特定の顔部が閉鎖されているかどうかを示し、我々のモデルを非閉鎖領域に誘導する。
これにより、顔が部分的に隠されている場合でも、表情認識システムが回復することができる。
論文 参考訳(メタデータ) (2020-05-12T20:42:55Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
顔表情データベースF2EDについて述べる。
顔の表情は119人から54人まで、200万枚以上の画像が含まれている。
実世界のシナリオでは,不均一なデータ分布やサンプルの欠如が一般的であるので,数発の表情学習の課題を評価する。
顔画像合成のための統合されたタスク駆動型フレームワークであるComposeal Generative Adversarial Network (Comp-GAN) 学習を提案する。
論文 参考訳(メタデータ) (2020-01-17T03:26:32Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
本稿では,反復的手順で学習した畳み込みニューラルネットワーク(CNN)アーキテクチャに依存する逆学習フレームワークを提案する。
その結果、提案手法は、感情認識の精度を保ち、顔認証の劣化を抑えるための畳み込み変換を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-16T22:45:52Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
最新のオープンソースの顔認識システムであるArcFaceを、100万枚以上の散らばった画像を用いた大規模な顔識別実験で監査する。
モデルのトレーニングデータには79.71%、存在しない人には75.73%のランク1顔認証精度がある。
論文 参考訳(メタデータ) (2020-01-09T15:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。