Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
- URL: http://arxiv.org/abs/2401.12070v3
- Date: Sun, 13 Oct 2024 19:12:59 GMT
- Title: Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
- Authors: Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein,
- Abstract summary: A score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text.
We propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs.
The method, called Binoculars, achieves state-of-the-art accuracy without any training data.
- Score: 98.28130949052313
- License:
- Abstract: Detecting text generated by modern large language models is thought to be hard, as both LLMs and humans can exhibit a wide range of complex behaviors. However, we find that a score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text. Based on this mechanism, we propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs. The method, called Binoculars, achieves state-of-the-art accuracy without any training data. It is capable of spotting machine text from a range of modern LLMs without any model-specific modifications. We comprehensively evaluate Binoculars on a number of text sources and in varied situations. Over a wide range of document types, Binoculars detects over 90% of generated samples from ChatGPT (and other LLMs) at a false positive rate of 0.01%, despite not being trained on any ChatGPT data.
Related papers
- "I know myself better, but not really greatly": Using LLMs to Detect and Explain LLM-Generated Texts [10.454446545249096]
Large language models (LLMs) have demonstrated impressive capabilities in generating human-like texts.
This paper explores the detection and explanation capabilities of LLM-based detectors of human-generated texts.
arXiv Detail & Related papers (2025-02-18T11:00:28Z) - Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - FDLLM: A Text Fingerprint Detection Method for LLMs in Multi-Language, Multi-Domain Black-Box Environments [18.755880639770755]
Using large language models (LLMs) can lead to potential security risks.
attackers may exploit this black-box scenario to deploy malicious models and embed viruses in the code provided to users.
We propose the first LLMGT fingerprint detection model, textbfFDLLM, based on Qwen2.5-7B and fine-tuned using LoRA to address these challenges.
arXiv Detail & Related papers (2025-01-27T13:18:40Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
In this work, we investigate the task of generated text detection by proposing the GigaCheck.
Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts.
Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize AI-generated intervals within text.
arXiv Detail & Related papers (2024-10-31T08:30:55Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
Large language models (LLMs) generate human-preferable texts.
In this paper, we identify the common characteristics shared by these models.
We propose two training schemes to further improve the detection ability of the reward model.
arXiv Detail & Related papers (2024-05-27T17:38:33Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - Smaller Language Models are Better Black-box Machine-Generated Text
Detectors [56.36291277897995]
Small and partially-trained models are better universal text detectors.
We find that whether the detector and generator were trained on the same data is not critically important to the detection success.
For instance, the OPT-125M model has an AUC of 0.81 in detecting ChatGPT generations, whereas a larger model from the GPT family, GPTJ-6B, has AUC of 0.45.
arXiv Detail & Related papers (2023-05-17T00:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.