論文の概要: CodeTailor: LLM-Powered Personalized Parsons Puzzles for Engaging Support While Learning Programming
- arxiv url: http://arxiv.org/abs/2401.12125v3
- Date: Thu, 30 May 2024 17:46:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 23:23:04.025022
- Title: CodeTailor: LLM-Powered Personalized Parsons Puzzles for Engaging Support While Learning Programming
- Title(参考訳): CodeTailor:LLMを利用したパーソナライズされたパーソンがプログラミングを学習しながらサポートを拡大
- Authors: Xinying Hou, Zihan Wu, Xu Wang, Barbara J. Ericson,
- Abstract要約: 生成AIは、ほとんどのイントロレベルのプログラミング問題に対するソリューションを作成することができる。
学生はこれらのツールを使って、コードを生成するだけで、エンゲージメントが減り、学習が制限される。
学生にパーソナライズされた支援を提供するために,大規模言語モデル(LLM)を活用するシステムであるCodeTailorを紹介する。
- 参考スコア(独自算出の注目度): 6.43344619836303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning to program can be challenging, and providing high-quality and timely support at scale is hard. Generative AI and its products, like ChatGPT, can create a solution for most intro-level programming problems. However, students might use these tools to just generate code for them, resulting in reduced engagement and limited learning. In this paper, we present CodeTailor, a system that leverages a large language model (LLM) to provide personalized help to students while still encouraging cognitive engagement. CodeTailor provides a personalized Parsons puzzle to support struggling students. In a Parsons puzzle, students place mixed-up code blocks in the correct order to solve a problem. A technical evaluation with previous incorrect student code snippets demonstrated that CodeTailor could deliver high-quality (correct, personalized, and concise) Parsons puzzles based on their incorrect code. We conducted a within-subjects study with 18 novice programmers. Participants perceived CodeTailor as more engaging than just receiving an LLM-generated solution (the baseline condition). In addition, participants applied more supported elements from the scaffolded practice to the posttest when using CodeTailor than baseline. Overall, most participants preferred using CodeTailor versus just receiving the LLM-generated code for learning. Qualitative observations and interviews also provided evidence for the benefits of CodeTailor, including thinking more about solution construction, fostering continuity in learning, promoting reflection, and boosting confidence. We suggest future design ideas to facilitate active learning opportunities with generative AI techniques.
- Abstract(参考訳): プログラムを学ぶことは難しく、大規模に高品質でタイムリーなサポートを提供することは難しい。
生成AIとその製品であるChatGPTは、ほとんどのイントロレベルのプログラミング問題に対するソリューションを作成することができる。
しかし、学生はこれらのツールを使ってコードを生成するだけで、エンゲージメントが減り、学習が制限される。
本稿では,大規模言語モデル(LLM)を活用しながら,学生にパーソナライズされた支援を提供するシステムであるCodeTailorを提案する。
CodeTailorは、苦労している学生を支援するパーソンズパズルをパーソナライズする。
パーソンズパズルでは、生徒は正しい順序で混合コードブロックを配置し、問題を解く。
以前の不正な学生コードスニペットによる技術的評価は、CodeTailorが不正なコードに基づいて、高品質な(正確でパーソナライズされ、簡潔な)パーソンズパズルを提供できることを示した。
初心者プログラマ18名を対象に本研究を行った。
参加者は、CodeTailorを単にLLM生成ソリューション(ベースライン条件)を受け取るよりも、より活発だと感じた。
さらに、参加者は、ベースラインよりもCodeTailorを使用する場合、足場付きプラクティスからポストテストにより多くのサポートされた要素を適用しました。
全体として、ほとんどの参加者は、学習のためにLLM生成コードを受け取ることよりもCodeTailorを使うことを好みました。
質的な観察とインタビューは、ソリューション構築についてもっと考えること、学習の連続性を育むこと、反射を促進すること、信頼を高めることなど、CodeTailorの利点を示す証拠も提供した。
我々は、生成AI技術によるアクティブな学習機会を促進するために、将来のデザインアイデアを提案する。
関連論文リスト
- Automating Personalized Parsons Problems with Customized Contexts and Concepts [2.185263087861945]
大規模言語モデル(LLM)は、学生がオンデマンドのパーソンズ問題を生成できるようにするソリューションを提供する。
本稿では,LLMを用いた無制限なドラッグアンドドロッププログラミング演習を生成する教育ツールであるPuzzleMakerPyを紹介する。
我々は,PuzzleMakerPyを大規模プログラミングコースに展開することで評価し,コンテキストフレーミングの個人化能力は学生にとって非常に有意義であることが判明した。
論文 参考訳(メタデータ) (2024-04-17T02:01:50Z) - Interactions with Prompt Problems: A New Way to Teach Programming with
Large Language Models [4.1599514827277355]
本稿では,プロンプト問題を用いてプログラミングを教える新しい方法を提案する。
学生は視覚的に問題を受け取り、どのように入力を出力に変換するかを示し、それをLLMが解読するプロンプトに変換する必要がある。
この問題は、学生プロンプトによって生成されたコードが全てのテストケースをパスできる場合、正しいと考えられる。
論文 参考訳(メタデータ) (2024-01-19T15:32:46Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - Integrating Personalized Parsons Problems with Multi-Level Textual
Explanations to Scaffold Code Writing [7.277912553209182]
初心者プログラマは、学習プロセスの一部として基本的なコードを書く必要がありますが、しばしば困難に直面します。
障害のある学生を支援するために、我々は最近パーソンズのパーソンズ問題を実装し、学生がコードブロックを配置して、それらをポップアップの足場として解決した。
学生たちは、正しい答えを単に受け取るのではなく、よりエンゲージメントが高く、学習に好まれていることに気付きました。
論文 参考訳(メタデータ) (2024-01-06T07:27:46Z) - Lessons from Building StackSpot AI: A Contextualized AI Coding Assistant [2.268415020650315]
大規模言語モデル上に構築された新しいタイプのツールが登場しつつある。
これらのツールは、微調整やコンテキスト情報によるユーザプロンプトの強化といった手法を用いて、欠点を軽減することを目的としている。
論文 参考訳(メタデータ) (2023-11-30T10:51:26Z) - Promptly: Using Prompt Problems to Teach Learners How to Effectively
Utilize AI Code Generators [5.458849730200646]
本稿では,「プロンプト問題」として知られる新しい教育概念を紹介する。
プロンプト問題(英: Prompt Problem)は、学生が自然言語のプロンプトを作成し、LLMが特定の問題に対して正しいコードを生成するよう促す問題である。
Promptlyを初年度のPythonプログラミングコースに導入したフィールドスタディから経験的知見を報告する。
論文 参考訳(メタデータ) (2023-07-31T01:46:42Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
大型言語モデル(LLM)と対話し,評価するためのプロトタイププラットフォームであるCheckMateを紹介した。
我々はCheckMateと共同で3つの言語モデル(InstructGPT, ChatGPT, GPT-4)を、学部レベルの数学の証明支援として評価する研究を行った。
我々は、人間の行動の分類を導き、概して肯定的な相関にもかかわらず、正しさと知覚的有用性の間に顕著な相違点があることを明らかにする。
論文 参考訳(メタデータ) (2023-06-02T17:12:25Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。