論文の概要: Personalized Parsons Puzzles as Scaffolding Enhance Practice Engagement Over Just Showing LLM-Powered Solutions
- arxiv url: http://arxiv.org/abs/2501.09210v1
- Date: Thu, 16 Jan 2025 00:05:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:48.874214
- Title: Personalized Parsons Puzzles as Scaffolding Enhance Practice Engagement Over Just Showing LLM-Powered Solutions
- Title(参考訳): パーソナライズされたパーソンズ・パズルズ:LCMを利用したソリューションを誇示するSaffolding Enhance Engagement
- Authors: Xinying Hou, Zihan Wu, Xu Wang, Barbara J. Ericson,
- Abstract要約: パーソンズパズルを足場としてパーソンズパズルを受け取った学生は、苦労するときに完全な解決策を得た学生よりもはるかに長い練習に従事した。
その結果,パーソンズパズルを足場としてパーソンズパズルを受講した学生は,苦労時に解答を受けた学生よりも有意に長い練習を行った。
- 参考スコア(独自算出の注目度): 6.43344619836303
- License:
- Abstract: As generative AI products could generate code and assist students with programming learning seamlessly, integrating AI into programming education contexts has driven much attention. However, one emerging concern is that students might get answers without learning from the LLM-generated content. In this work, we deployed the LLM-powered personalized Parsons puzzles as scaffolding to write-code practice in a Python learning classroom (PC condition) and conducted an 80-minute randomized between-subjects study. Both conditions received the same practice problems. The only difference was that when requesting help, the control condition showed students a complete solution (CC condition), simulating the most traditional LLM output. Results indicated that students who received personalized Parsons puzzles as scaffolding engaged in practicing significantly longer than those who received complete solutions when struggling.
- Abstract(参考訳): 生成的AI製品は、コードを生成し、学生がシームレスにプログラミング学習を行うのを助けることができるため、AIをプログラミング教育のコンテキストに統合することは、多くの注目を集めている。
しかし、新たな懸念は、学生がLLM生成コンテンツから学ばずに答えを得る可能性があることである。
本研究では,LLMを利用したパーソンズパズルをスキャフォールディングとして,Python学習教室(PC条件)で記述コードの練習を行い,80分間のランダム化比較を行った。
どちらの条件も同じ問題があった。
唯一の違いは、助けを求めるとき、制御条件が生徒に完全な解(CC条件)を示し、最も伝統的なLCM出力をシミュレートすることであった。
その結果,パーソンズパズルを足場としてパーソンズパズルを受講した学生は,苦労時に解答を受けた学生よりも有意に長い練習を行った。
関連論文リスト
- Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Automating Personalized Parsons Problems with Customized Contexts and Concepts [2.185263087861945]
大規模言語モデル(LLM)は、学生がオンデマンドのパーソンズ問題を生成できるようにするソリューションを提供する。
本稿では,LLMを用いた無制限なドラッグアンドドロッププログラミング演習を生成する教育ツールであるPuzzleMakerPyを紹介する。
我々は,PuzzleMakerPyを大規模プログラミングコースに展開することで評価し,コンテキストフレーミングの個人化能力は学生にとって非常に有意義であることが判明した。
論文 参考訳(メタデータ) (2024-04-17T02:01:50Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - PuzzleBench: Can LLMs Solve Challenging First-Order Combinatorial
Reasoning Problems? [27.696027301600793]
本稿では,31の課題のデータセットであるPuzzleBenchについて紹介する。
これらの問題は、すべて第一次、すなわち、様々な大きさの問題のインスタンスでインスタンス化でき、そのほとんどはNPハードである。
まず,LLMがシンボリック・ソルバによって支援されても,データセット上ではかなり低性能であることを示す。
そこで本研究では,LLMとシンボルソルバとインタプリタを組み合わせた新しいアプローチであるPuzzle-LMを提案する。
論文 参考訳(メタデータ) (2024-02-04T20:56:09Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - CodeTailor: LLM-Powered Personalized Parsons Puzzles for Engaging Support While Learning Programming [6.43344619836303]
生成AIは、ほとんどのイントロレベルのプログラミング問題に対するソリューションを作成することができる。
学生はこれらのツールを使って、コードを生成するだけで、エンゲージメントが減り、学習が制限される。
学生にパーソナライズされた支援を提供するために,大規模言語モデル(LLM)を活用するシステムであるCodeTailorを紹介する。
論文 参考訳(メタデータ) (2024-01-22T17:08:54Z) - Integrating Personalized Parsons Problems with Multi-Level Textual
Explanations to Scaffold Code Writing [7.277912553209182]
初心者プログラマは、学習プロセスの一部として基本的なコードを書く必要がありますが、しばしば困難に直面します。
障害のある学生を支援するために、我々は最近パーソンズのパーソンズ問題を実装し、学生がコードブロックを配置して、それらをポップアップの足場として解決した。
学生たちは、正しい答えを単に受け取るのではなく、よりエンゲージメントが高く、学習に好まれていることに気付きました。
論文 参考訳(メタデータ) (2024-01-06T07:27:46Z) - Understanding the Effects of Using Parsons Problems to Scaffold Code
Writing for Students with Varying CS Self-Efficacy Levels [7.277912553209182]
本研究では,CS自己効力のレベルが異なる学生を対象に,Parsons問題をコード記述の足場として利用することの影響について検討した。
CS自己効力レベルが低い学生では,足場を受講した学生は,実践的パフォーマンスと実践的問題解決効率が有意に向上した。
このトピックに関する事前実践的な知識を持つ学生は、パーソンズの足場を効果的に活用する傾向があった。
論文 参考訳(メタデータ) (2023-11-29T22:02:46Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - PAL: Program-aided Language Models [112.94785609781503]
自然言語問題を理解するために,プログラム支援言語モデル(PaL)を提案する。
PaLはソリューションステップをPythonインタプリタのようなプログラムランタイムにオフロードする。
私たちは12のベンチマークで新しい最先端の結果を設定しました。
論文 参考訳(メタデータ) (2022-11-18T18:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。