論文の概要: Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
- arxiv url: http://arxiv.org/abs/2401.12129v2
- Date: Tue, 29 Oct 2024 19:25:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:24.686458
- Title: Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
- Title(参考訳): Abled Learned Temperature Energy を用いたアウト・オブ・ディストリビューション検出・応用
- Authors: Will LeVine, Benjamin Pikus, Jacob Phillips, Berk Norman, Fernando Amat Gil, Sean Hendryx,
- Abstract要約: OOD検出法としてAblated Learned Temperature Energy(略してAbeT)を導入する。
In-Distribution (ID) と OOD サンプルを区別するためにモデルを学習した理由に関する実証的な知見を提供する。
オブジェクト検出とセマンティックセグメンテーションにおいて,OODオブジェクトに対応する予測境界ボックスと画素を識別する手法の有効性を示す。
- 参考スコア(独自算出の注目度): 38.11184252495269
- License:
- Abstract: As deep neural networks become adopted in high-stakes domains, it is crucial to identify when inference inputs are Out-of-Distribution (OOD) so that users can be alerted of likely drops in performance and calibration despite high confidence -- ultimately to know when networks' decisions (and their uncertainty in those decisions) should be trusted. In this paper we introduce Ablated Learned Temperature Energy (or "AbeT" for short), an OOD detection method which lowers the False Positive Rate at 95\% True Positive Rate (FPR@95) by $43.43\%$ in classification compared to state of the art without training networks in multiple stages or requiring hyperparameters or test-time backward passes. We additionally provide empirical insights as to why our model learns to distinguish between In-Distribution (ID) and OOD samples while only being explicitly trained on ID samples via exposure to misclassified ID examples at training time. Lastly, we show the efficacy of our method in identifying predicted bounding boxes and pixels corresponding to OOD objects in object detection and semantic segmentation, respectively -- with an AUROC increase of $5.15\%$ in object detection and both a decrease in FPR@95 of $41.48\%$ and an increase in AUPRC of $34.20\%$ in semantic segmentation compared to previous state of the art.
- Abstract(参考訳): ディープニューラルネットワークがハイテイクドメインに採用されるにつれて、推論入力がアウト・オブ・ディストリビューション(OOD)(Out-of-Distribution)であるかどうかを特定することが重要になる。
本稿では,複数段階のトレーニングネットワークやハイパーパラメータやテストタイムの後方通過を必要とせずに,False Positive Rate (FPR@95) を43.43 %で分類する OOD 検出手法である Ablated Learned Temperature Energy (略して "AbeT" ) を紹介する。
さらに,本モデルがIDサンプルとOODサンプルを区別し,トレーニング時に誤分類されたIDサンプルに曝露することで,IDサンプルに対して明示的にトレーニングを行ないながら,なぜそのモデルがIDサンプルとOODサンプルを区別するか,という経験的知見も提供する。
最後に,オブジェクト検出およびセマンティックセグメンテーションにおけるOODオブジェクトに対応する予測バウンディングボックスと画素の識別における本手法の有効性を示す。AUROCはオブジェクト検出において5.15 %,FPR@95は41.48 %,AUPRCは34.20 %,従来の最先端セマンティックセグメンテーションでは34.20 %であった。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Out-of-distribution Object Detection through Bayesian Uncertainty
Estimation [10.985423935142832]
OOD検出のための新しい,直感的で,スケーラブルなオブジェクト検出手法を提案する。
提案手法は,提案したガウス分布からの重みパラメータサンプリングにより,IDデータとOODデータを識別することができる。
BDD100kおよびVOCデータセットでトレーニングした場合,FPR95スコアを最大8.19%削減し,AUROCスコアを最大13.94%向上させることで,ベイズ対象検出器のOOD識別性能が良好であることを実証した。
論文 参考訳(メタデータ) (2023-10-29T19:10:52Z) - HAct: Out-of-Distribution Detection with Neural Net Activation
Histograms [7.795929277007233]
本稿では,OOD検出のための新しい記述子HActを提案する。すなわち,入力データの影響下でのニューラルネットワーク層の出力値の確率分布(ヒストグラムで近似)について述べる。
複数の画像分類ベンチマークにおいて,HActはOOD検出における最先端技術よりもはるかに精度が高いことを示す。
論文 参考訳(メタデータ) (2023-09-09T16:22:18Z) - Diffusion Denoised Smoothing for Certified and Adversarial Robust
Out-Of-Distribution Detection [6.247268652296234]
本稿では,OOD検出のロバスト性を,入力周辺の$ell$-norm内で証明するための新しい手法を提案する。
我々は,OOD検体に対する敵攻撃を検出するための現在の手法を改良するとともに,非分布検体に対する高いレベルの認証及び敵ロバスト性を提供する。
論文 参考訳(メタデータ) (2023-03-27T07:52:58Z) - Partial and Asymmetric Contrastive Learning for Out-of-Distribution
Detection in Long-Tailed Recognition [80.07843757970923]
既存のOOD検出手法は,トレーニングセットが長距離分布している場合,大幅な性能劣化に悩まされていることを示す。
本稿では,部分的および非対称的な教師付きコントラスト学習(PASCL)を提案する。
我々の手法は従来の最先端の手法を1.29%$, $1.45%$, $0.69%$異常検出偽陽性率(FPR)と$3.24%$, 4,.06%$, 7,89%$in-distributionで上回ります。
論文 参考訳(メタデータ) (2022-07-04T01:53:07Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
我々は,$k$-NN 密度推定値を用いて OOD サンプルを検出する教師なし手法を提案する。
emphLabel Smoothed Embedding hypothesis と呼ばれるラベル平滑化に関する最近の知見を活用する。
提案手法は,多くのOODベースラインを上回り,新しい有限サンプル高確率統計結果を提供することを示す。
論文 参考訳(メタデータ) (2021-02-09T21:04:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。