Quantised Neural Network Accelerators for Low-Power IDS in Automotive
Networks
- URL: http://arxiv.org/abs/2401.12240v1
- Date: Fri, 19 Jan 2024 21:19:48 GMT
- Title: Quantised Neural Network Accelerators for Low-Power IDS in Automotive
Networks
- Authors: Shashwat Khandelwal, Anneliese Walsh, Shanker Shreejith
- Abstract summary: We explore low-power custom quantised Multi-Layer Perceptrons (MLP) as an Intrusion Detection System (IDS) for automotive controller area network (CAN)
Our approach achieves significant improvements in latency (0.12 ms per-message processing latency) and inference energy consumption (0.25 mJ per inference) while achieving similar classification performance as state-of-the-art approaches in the literature.
- Score: 12.084121187559864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore low-power custom quantised Multi-Layer Perceptrons
(MLPs) as an Intrusion Detection System (IDS) for automotive controller area
network (CAN). We utilise the FINN framework from AMD/Xilinx to quantise, train
and generate hardware IP of our MLP to detect denial of service (DoS) and
fuzzying attacks on CAN network, using ZCU104 (XCZU7EV) FPGA as our target ECU
architecture with integrated IDS capabilities. Our approach achieves
significant improvements in latency (0.12 ms per-message processing latency)
and inference energy consumption (0.25 mJ per inference) while achieving
similar classification performance as state-of-the-art approaches in the
literature.
Related papers
- WDMoE: Wireless Distributed Mixture of Experts for Large Language Models [68.45482959423323]
Large Language Models (LLMs) have achieved significant success in various natural language processing tasks.
We propose a wireless distributed Mixture of Experts (WDMoE) architecture to enable collaborative deployment of LLMs across edge servers at the base station (BS) and mobile devices in wireless networks.
arXiv Detail & Related papers (2024-11-11T02:48:00Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors.
In this paper, we present a case for custom-quantised literature (CQMLP) as a multi-class classification model.
We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages with a very high accuracy of 99.9%.
arXiv Detail & Related papers (2024-01-19T21:11:02Z) - A Lightweight FPGA-based IDS-ECU Architecture for Automotive CAN [13.581341206178525]
This paper presents a consolidated ECU architecture incorporating an Intrusion Detection System (IDS) for Automotive Controller Area Network (CAN)
We propose two quantised multi-layer perceptrons (QMLP's) as isolated IDSs for detecting a range of attack vectors including Denial-of-Service, Fuzzing and Spoofing.
The proposed models achieve the state-of-the-art classification accuracy for all the attacks, while we observed a 15x reduction in power consumption when compared against the GPU-based implementation of the same models quantised using Nvidia libraries.
arXiv Detail & Related papers (2024-01-19T13:51:24Z) - A Lightweight Multi-Attack CAN Intrusion Detection System on Hybrid
FPGAs [13.581341206178525]
Intrusion detection and mitigation approaches have shown promising results in detecting multiple attack vectors in Controller Area Network (CAN)
We present a lightweight multi-attack quantised machine learning model that is deployed using Xilinx's Deep Learning Processing Unit IP on a Zynq Ultrascale+ (XCZU3EG) FPGA.
The model detects denial of service and fuzzing attacks with an accuracy of above 99 % and a false positive rate of 0.07%, which are comparable to the state-of-the-art techniques in the literature.
arXiv Detail & Related papers (2024-01-19T13:39:05Z) - Deep Learning-based Embedded Intrusion Detection System for Automotive
CAN [12.084121187559864]
Various intrusion detection approaches have been proposed to detect and tackle such threats, with machine learning models proving highly effective.
We propose a hybrid FPGA-based ECU approach that can transparently integrate IDS functionality through a dedicated off-the-shelf hardware accelerator.
Our results show that the proposed approach provides an average accuracy of over 99% across multiple attack datasets with 0.64% false detection rates.
arXiv Detail & Related papers (2024-01-19T13:13:38Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
arXiv Detail & Related papers (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - FENXI: Deep-learning Traffic Analytics at the Edge [69.34903175081284]
We present FENXI, a system to run complex analytics by leveraging TPU.
FENXI decouples operations and traffic analytics which operates at different granularities.
Our analysis shows that FENXI can sustain forwarding line rate traffic processing requiring only limited resources.
arXiv Detail & Related papers (2021-05-25T08:02:44Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
We propose a novel Automatic and Scalable Face Detector (ASFD)
ASFD is based on a combination of neural architecture search techniques as well as a new loss design.
Our ASFD-D6 outperforms the prior strong competitors, and our lightweight ASFD-D0 runs at more than 120 FPS with Mobilenet for VGA-resolution images.
arXiv Detail & Related papers (2020-03-25T06:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.