論文の概要: Hybrid Time-Domain Behavior Model Based on Neural Differential Equations and RNNs
- arxiv url: http://arxiv.org/abs/2503.22313v1
- Date: Fri, 28 Mar 2025 10:42:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:28:38.706750
- Title: Hybrid Time-Domain Behavior Model Based on Neural Differential Equations and RNNs
- Title(参考訳): ニューラル微分方程式とRNNに基づくハイブリッド時間領域挙動モデル
- Authors: Zenghui Chang, Yang Zhang, Hu Tan, Hong Cai Chen,
- Abstract要約: 本稿では,新しい連続時間ドメインハイブリッドモデリングパラダイムを提案する。
ニューラルネットワーク差分モデルとリカレントニューラルネットワーク(RNN)を統合し、NODE-RNNとNCDE-RNNモデルを作成する。
理論的解析により、このハイブリッドモデルは事象駆動型動的突然変異応答と伝播安定性において数学的に有利であることが示された。
- 参考スコア(独自算出の注目度): 3.416692407056595
- License:
- Abstract: Nonlinear dynamics system identification is crucial for circuit emulation. Traditional continuous-time domain modeling approaches have limitations in fitting capability and computational efficiency when used for modeling circuit IPs and device behaviors.This paper presents a novel continuous-time domain hybrid modeling paradigm. It integrates neural network differential models with recurrent neural networks (RNNs), creating NODE-RNN and NCDE-RNN models based on neural ordinary differential equations (NODE) and neural controlled differential equations (NCDE), respectively.Theoretical analysis shows that this hybrid model has mathematical advantages in event-driven dynamic mutation response and gradient propagation stability. Validation using real data from PIN diodes in high-power microwave environments shows NCDE-RNN improves fitting accuracy by 33\% over traditional NCDE, and NODE-RNN by 24\% over CTRNN, especially in capturing nonlinear memory effects.The model has been successfully deployed in Verilog-A and validated through circuit emulation, confirming its compatibility with existing platforms and practical value.This hybrid dynamics paradigm, by restructuring the neural differential equation solution path, offers new ideas for high-precision circuit time-domain modeling and is significant for complex nonlinear circuit system modeling.
- Abstract(参考訳): 非線形力学系同定は回路エミュレーションに不可欠である。
従来の連続時間ドメインモデリング手法は、回路IPのモデリングやデバイス動作に使用する場合の適合性と計算効率に制限があるが、本研究では、新しい連続時間ドメインハイブリッドモデリングパラダイムを提案する。
ニューラルネットワーク微分モデルとリカレントニューラルネットワーク(RNN)を統合し,ニューラル常微分方程式(NODE)とニューラル制御微分方程式(NCDE)に基づいてNODE-RNNとNCDE-RNNモデルを作成する。
高出力マイクロ波環境下でのPINダイオードの実データによるバリデーションにより、NCDE-RNNは従来のNCDEよりも33\%、NODE-RNNはCTRNNよりも24\%向上し、特に非線形メモリ効果を捉える。このモデルは、Verilog-Aで展開され、回路エミュレーションを通じて検証され、既存のプラットフォームとの互換性と実用性を確認している。
関連論文リスト
- Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks [20.12750360095627]
結合力学系のための合成学習アルゴリズムを開発した。
我々は、ポート・ハミルトンDAEの微分および代数的成分における未知項のパラメータ化にニューラルネットワークを用いる。
我々は、個別のN-PHDAEモデルを個別のグリッドコンポーネント向けに訓練し、それらを結合して大規模ネットワークの挙動を正確に予測する。
論文 参考訳(メタデータ) (2024-12-15T15:13:11Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
本稿では,ハイブリッド量子古典系の非線形非断熱力学をモデル化するための畳み込みニューラルネットワークに基づくRNNモデルを提案する。
検証研究により、訓練されたPARCモデルは、一次元半古典的なホルシュタインモデルの時空進化を再現できることが示されている。
論文 参考訳(メタデータ) (2024-12-09T16:23:25Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
計算時間と空間複雑度はそれぞれ、列長に関して立方体と二次体から線形へと減少する。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Regularized Sequential Latent Variable Models with Adversarial Neural
Networks [33.74611654607262]
逐次データの変動をモデル化するために,RNN で高レベル潜時確率変数を使用する方法を提案する。
変動RNNモデルの学習に逆法を用いる可能性を探る。
論文 参考訳(メタデータ) (2021-08-10T08:05:14Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
本稿では,リカレントニューラルネットワークのための新しいアーキテクチャを提案する。
提案するRNNは, 2次常微分方程式系の時間分解に基づく。
実験の結果,提案したRNNは,様々なベンチマークによる最先端技術に匹敵する性能を示した。
論文 参考訳(メタデータ) (2020-10-02T12:35:04Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。