Truck Parking Usage Prediction with Decomposed Graph Neural Networks
- URL: http://arxiv.org/abs/2401.12920v2
- Date: Mon, 12 Aug 2024 20:33:46 GMT
- Title: Truck Parking Usage Prediction with Decomposed Graph Neural Networks
- Authors: Rei Tamaru, Yang Cheng, Steven Parker, Ernie Perry, Bin Ran, Soyoung Ahn,
- Abstract summary: Truck parking on freight corridors faces the major challenge of insufficient parking spaces.
It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices.
This paper presents the Regional Temporal Graph Neural Network (RegT-CN) to predict parking usage across the entire state.
- Score: 15.291200515217513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Truck parking on freight corridors faces the major challenge of insufficient parking spaces. This is exacerbated by the Hour-of-Service (HOS) regulations, which often result in unauthorized parking practices, causing safety concerns. It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices. In light of this, existing studies have developed various methods to predict the usage of a truck parking site and have demonstrated satisfactory accuracy. However, these studies focus on a single parking site, and few approaches have been proposed to predict the usage of multiple truck parking sites considering spatio-temporal dependencies, due to the lack of data. This paper aims to fill this gap and presents the Regional Temporal Graph Neural Network (RegT-GCN) to predict parking usage across the entire state to provide more comprehensive truck parking information. The framework leverages the topological structures of truck parking site locations and historical parking data to predict the occupancy rate considering spatio-temporal dependencies across a state. To achieve this, we introduce a Regional Decomposition approach, which effectively captures the geographical characteristics of the truck parking locations and their spatial correlations. Evaluation results demonstrate that the proposed model outperforms other baseline models, improving performance by more than 20%.
Related papers
- Efficient Large-Scale Urban Parking Prediction: Graph Coarsening Based on Real-Time Parking Service Capability [7.5350858327743095]
This paper proposes an innovative framework for predicting large-scale urban parking graphs leveraging real-time service capabilities.
To effectively handle large-scale parking data, this study combines graph coarsening techniques with temporal convolutional autoencoders.
Our framework achieves improvements of 46.8% and 30.5% in accuracy and efficiency, respectively.
arXiv Detail & Related papers (2024-10-05T03:54:25Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Smart Camera Parking System With Auto Parking Spot Detection [1.0512475026060208]
We provide a novel approach called PakSta for identifying the state of parking spots automatically.
Our method utilizes object detector from PakLoc to simultaneously determine the occupancy status of all parking lots within a video frame.
The efficacy of our proposed methodology on the PKLot dataset results in a significant reduction in human labor of 94.25%.
arXiv Detail & Related papers (2024-07-07T19:00:11Z) - Leverage Multi-source Traffic Demand Data Fusion with Transformer Model for Urban Parking Prediction [4.672121078249809]
This study proposes a parking availability prediction framework integrating spatial-temporal deep learning with multi-source data fusion.
The framework is based on the Transformer as the spatial-temporal deep learning model.
Real-world empirical data was used to verify the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-05-02T07:28:27Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Beyond Prediction: On-street Parking Recommendation using Heterogeneous
Graph-based List-wise Ranking [18.08128929432942]
We first time propose an on-street parking recommendation (OPR) task to directly recommend a parking space for a driver.
We design a highly efficient heterogeneous graph called ESGraph to represent historical and real-time meters' turnover events.
A ranking model is further utilized to learn a score function that helps recommend a list of ranked parking spots.
arXiv Detail & Related papers (2023-04-29T03:59:35Z) - Parking Analytics Framework using Deep Learning [1.4146420810689422]
We present a methodology to monitor car parking areas and to analyze their occupancy in real-time.
The solution is based on a combination between image analysis and deep learning techniques.
arXiv Detail & Related papers (2022-03-15T11:16:59Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
The improvement of air-quality in urban areas is one of the main concerns of public government bodies.
This concern emerges from the evidence between the air quality and the public health.
Proposal for dynamic prices in regulated parking services is presented.
arXiv Detail & Related papers (2022-01-11T20:31:35Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
The proposed algorithm consists of three parts: an imaginative model for anticipating results before parking, an improved rapid-exploring random tree (RRT) and a path smoothing module.
Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars.
In order to evaluate the algorithm's effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios.
arXiv Detail & Related papers (2021-08-25T18:24:34Z) - Deep Multi-Task Learning for Joint Localization, Perception, and
Prediction [68.50217234419922]
This paper investigates the issues that arise in state-of-the-art autonomy stacks under localization error.
We design a system that jointly performs perception, prediction, and localization.
Our architecture is able to reuse computation between both tasks, and is thus able to correct localization errors efficiently.
arXiv Detail & Related papers (2021-01-17T17:20:31Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.