論文の概要: Deep multitask neural networks for solving some stochastic optimal
control problems
- arxiv url: http://arxiv.org/abs/2401.12923v2
- Date: Sat, 27 Jan 2024 02:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 20:15:43.874209
- Title: Deep multitask neural networks for solving some stochastic optimal
control problems
- Title(参考訳): 確率的最適制御問題を解くためのディープマルチタスクニューラルネットワーク
- Authors: Christian Yeo
- Abstract要約: 本稿では,最適制御問題のクラスについて考察し,ニューラルネットワークを用いた効果的な解法を提案する。
マルチタスクニューラルネットワークをトレーニングするために,タスク間の学習を動的にバランスさせる新しいスキームを導入する。
実世界のデリバティブ価格問題に関する数値実験を通じて,本手法が最先端の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing neural network-based approaches for solving stochastic optimal
control problems using the associated backward dynamic programming principle
rely on the ability to simulate the underlying state variables. However, in
some problems, this simulation is infeasible, leading to the discretization of
state variable space and the need to train one neural network for each data
point. This approach becomes computationally inefficient when dealing with
large state variable spaces. In this paper, we consider a class of this type of
stochastic optimal control problems and introduce an effective solution
employing multitask neural networks. To train our multitask neural network, we
introduce a novel scheme that dynamically balances the learning across tasks.
Through numerical experiments on real-world derivatives pricing problems, we
prove that our method outperforms state-of-the-art approaches.
- Abstract(参考訳): 関連する後方動的プログラミング原理を用いて確率的最適制御問題を解決する既存のニューラルネットワークベースのアプローチのほとんどは、基礎となる状態変数をシミュレートする能力に依存している。
しかし、いくつかの問題では、このシミュレーションは実現不可能であり、状態変数空間の離散化と、各データポイントに対して1つのニューラルネットワークをトレーニングする必要がある。
このアプローチは、大きな状態変数空間を扱うときに計算量的に非効率になる。
本稿では,この種の確率的最適制御問題のクラスを考察し,マルチタスクニューラルネットワークを用いた効果的な解法を提案する。
マルチタスクニューラルネットワークをトレーニングするために,タスク間の学習を動的にバランスさせる新しいスキームを導入する。
実世界のデリバティブ価格問題に関する数値実験を通じて,本手法が最先端手法より優れていることを示す。
関連論文リスト
- The Effects of Multi-Task Learning on ReLU Neural Network Functions [17.786058035763254]
多数の多様なタスクを持つニューラルネットワーク学習問題は、最適ニューロンによって決定される固定されたカーネル上の$ell2$(ヒルベルト空間)問題とほぼ同値であることを示す。
論文 参考訳(メタデータ) (2024-10-29T03:27:08Z) - Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
自己回帰型ニューラルネットワーク、畳み込み型ニューラルネットワーク、リカレントニューラルネットワーク、グラフニューラルネットワークなど、多くのディープニューラルネットワークがIsingモデルの解決に使用されている。
本稿では、スピン変数間の相互作用を効果的に活用できるメッセージパッシング機構を備えた変分自己回帰アーキテクチャを提案する。
新しいネットワークは、アニーリングフレームワークの下で訓練され、いくつかの原型スピンハミルトニアンの解法、特に低温での大きなスピン系において、既存の方法よりも優れている。
論文 参考訳(メタデータ) (2024-04-09T11:27:07Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Near-optimal control of dynamical systems with neural ordinary
differential equations [0.0]
ディープラーニングとニューラルネットワークに基づく最適化の最近の進歩は、高次元力学系を含む制御問題を解くのに役立つ方法の開発に寄与している。
まず、時間を通して切り詰められた非切り抜きのバックプロパゲーションが、実行時のパフォーマンスとニューラルネットワークが最適な制御関数を学習する能力にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-06-22T14:11:11Z) - Stable, accurate and efficient deep neural networks for inverse problems
with analysis-sparse models [2.969705152497174]
本稿では,一般解析スパースモデルを用いた逆問題に対する高精度で安定かつ効率的なニューラルネットワークの構築について述べる。
ネットワーク構築のために,凸最適化のための1次高速化手法であるNESTAをアンロールする。
再起動方式は、必要なネットワーク深さの指数的減衰を可能とし、より浅いネットワークとなり、その結果より効率的なネットワークを実現する。
論文 参考訳(メタデータ) (2022-03-02T00:44:25Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Training multi-objective/multi-task collocation physics-informed neural
network with student/teachers transfer learnings [0.0]
本稿では,事前学習ステップとネット間知識伝達アルゴリズムを用いたPINNトレーニングフレームワークを提案する。
多目的最適化アルゴリズムは、競合する制約のある物理的インフォームドニューラルネットワークの性能を向上させることができる。
論文 参考訳(メタデータ) (2021-07-24T00:43:17Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。