Towards Patient-Specific Surgical Planning for Bicuspid Aortic Valve Repair: Fully Automated Segmentation of the Aortic Valve in 4D CT
- URL: http://arxiv.org/abs/2502.09805v1
- Date: Thu, 13 Feb 2025 22:43:43 GMT
- Title: Towards Patient-Specific Surgical Planning for Bicuspid Aortic Valve Repair: Fully Automated Segmentation of the Aortic Valve in 4D CT
- Authors: Zaiyang Guo, Ningjun J Dong, Harold Litt, Natalie Yushkevich, Melanie Freas, Jessica Nunez, Victor Ferrari, Jilei Hao, Shir Goldfinger, Matthew A. Jolley, Joseph Bavaria, Nimesh Desai, Alison M. Pouch,
- Abstract summary: The bicuspid aortic valve (BAV) is the most prevalent congenital heart defect and may require surgery for complications such as stenosis, regurgitation, and aortopathy.
Contrast-enhanced 4D computed tomography (CT) produces volumetric temporal sequences with excellent contrast and spatial resolution.
Deep learning-based methods are capable of fully automated segmentation, but no BAV-specific model exists.
- Score: 0.0732099897993399
- License:
- Abstract: The bicuspid aortic valve (BAV) is the most prevalent congenital heart defect and may require surgery for complications such as stenosis, regurgitation, and aortopathy. BAV repair surgery is effective but challenging due to the heterogeneity of BAV morphology. Multiple imaging modalities can be employed to assist the quantitative assessment of BAVs for surgical planning. Contrast-enhanced 4D computed tomography (CT) produces volumetric temporal sequences with excellent contrast and spatial resolution. Segmentation of the aortic cusps and root in these images is an essential step in creating patient specific models for visualization and quantification. While deep learning-based methods are capable of fully automated segmentation, no BAV-specific model exists. Among valve segmentation studies, there has been limited quantitative assessment of the clinical usability of the segmentation results. In this work, we developed a fully auto- mated multi-label BAV segmentation pipeline based on nnU-Net. The predicted segmentations were used to carry out surgically relevant morphological measurements including geometric cusp height, commissural angle and annulus diameter, and the results were compared against manual segmentation. Automated segmentation achieved average Dice scores of over 0.7 and symmetric mean distance below 0.7 mm for all three aortic cusps and the root wall. Clinically relevant benchmarks showed good consistency between manual and predicted segmentations. Overall, fully automated BAV segmentation of 3D frames in 4D CT can produce clinically usable measurements for surgical risk stratification, but the temporal consistency of segmentations needs to be improved.
Related papers
- Class-Aware Cartilage Segmentation for Autonomous US-CT Registration in Robotic Intercostal Ultrasound Imaging [39.597735935731386]
A class-aware cartilage bone segmentation network with geometry-constraint post-processing is presented to capture patient-specific rib skeletons.
A dense skeleton graph-based non-rigid registration is presented to map the intercostal scanning path from a generic template to individual patients.
Results demonstrate that the proposed graph-based registration method can robustly and precisely map the path from CT template to individual patients.
arXiv Detail & Related papers (2024-06-06T14:15:15Z) - CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography
Angiography via Context-Aware Shifted Window Self-Attention [10.335899694123711]
We introduce Context Infused Swin-UNet (CIS-UNet), a deep learning model for aortic segmentation.
CIS-UNet adopts a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) as the bottleneck block.
We trained our model on computed tomography (CT) scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the state-of-the-art SwinUNetR segmentation model, by achieving a superior mean Dice coefficient of 0.713 compared
arXiv Detail & Related papers (2024-01-23T19:17:20Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - A Deep Learning-Based Fully Automated Pipeline for Regurgitant Mitral Valve Anatomy Analysis From 3D Echocardiography [0.3387808070669509]
The developed approach relies on a 3D multi-decoder residual convolutional neural network (CNN) with a U-Net architecture for multi-class segmentation of MV annulus and leaflets.
The whole process requires minimal user interaction and requires approximately 15 seconds.
arXiv Detail & Related papers (2023-02-21T12:48:44Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
The aortic vessel tree is composed of the aorta and its branching arteries.
We systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree.
arXiv Detail & Related papers (2021-08-06T08:18:28Z) - Robust Pancreatic Ductal Adenocarcinoma Segmentation with
Multi-Institutional Multi-Phase Partially-Annotated CT Scans [25.889684822655255]
Pancreatic ductal adenocarcinoma (PDAC) segmentation is one of the most challenging tumor segmentation tasks.
Based on a new self-learning framework, we propose to train the PDAC segmentation model using a much larger quantity of patients.
Experiment results show that our proposed method provides an absolute improvement of 6.3% Dice score over the strong baseline of nnUNet trained on annotated images.
arXiv Detail & Related papers (2020-08-24T18:50:30Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.