論文の概要: Analyzing COVID-19 Vaccination Sentiments in Nigerian Cyberspace:
Insights from a Manually Annotated Twitter Dataset
- arxiv url: http://arxiv.org/abs/2401.13133v1
- Date: Tue, 23 Jan 2024 22:49:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 16:08:53.360430
- Title: Analyzing COVID-19 Vaccination Sentiments in Nigerian Cyberspace:
Insights from a Manually Annotated Twitter Dataset
- Title(参考訳): ナイジェリアのサイバースペースにおける新型コロナウイルスワクチン接種感の分析:手書きの注釈付きTwitterデータセットから
- Authors: Ibrahim Said Ahmad, Lukman Jibril Aliyu, Abubakar Auwal Khalid, Saminu
Muhammad Aliyu, Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Bala Mairiga
Abduljalil, Bello Shehu Bello, Amina Imam Abubakar
- Abstract要約: ナイジェリアにおけるワクチンの受け入れについて,トランスフォーマーに基づく言語モデルを用いて検討する。
関連するハッシュタグとキーワードを用いて複数言語ツイートをクロールすることで,新しいデータセットを開発した。
分析と可視化の結果、ほとんどのツイートは新型コロナウイルスワクチンに関する中立的な感情を表しており、一部の人は肯定的な見解を示しています。
- 参考スコア(独自算出の注目度): 2.820717448579396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous successes have been achieved in combating the COVID-19 pandemic,
initially using various precautionary measures like lockdowns, social
distancing, and the use of face masks. More recently, various vaccinations have
been developed to aid in the prevention or reduction of the severity of the
COVID-19 infection. Despite the effectiveness of the precautionary measures and
the vaccines, there are several controversies that are massively shared on
social media platforms like Twitter. In this paper, we explore the use of
state-of-the-art transformer-based language models to study people's acceptance
of vaccines in Nigeria. We developed a novel dataset by crawling multi-lingual
tweets using relevant hashtags and keywords. Our analysis and visualizations
revealed that most tweets expressed neutral sentiments about COVID-19 vaccines,
with some individuals expressing positive views, and there was no strong
preference for specific vaccine types, although Moderna received slightly more
positive sentiment. We also found out that fine-tuning a pre-trained LLM with
an appropriate dataset can yield competitive results, even if the LLM was not
initially pre-trained on the specific language of that dataset.
- Abstract(参考訳): 新型コロナウイルス(covid-19)のパンデミック対策には、ロックダウンやソーシャルディスタンシング、フェイスマスクの使用など、さまざまな予防措置が使用された。
最近では、新型コロナウイルス感染の重症度を予防または軽減するために様々なワクチンが開発されている。
予防措置とワクチンの有効性にもかかわらず、Twitterのようなソーシャルメディアプラットフォームで大々的に共有される議論はいくつかある。
本稿では,ナイジェリアにおけるワクチンの受け入れについて,最先端のトランスフォーマーベース言語モデルを用いて検討する。
関連するハッシュタグとキーワードを用いて多言語ツイートをクロールする新しいデータセットを開発した。
分析と可視化の結果、ほとんどのツイートが新型コロナウイルスワクチンに関する中立的な感情を示しており、一部の個人は肯定的な見解を示しており、特定のワクチンタイプを強く好むことはなかった。
また,事前学習したLLMを適切なデータセットで微調整することで,LLMが当初そのデータセットの特定の言語で事前学習されていなくても,競争結果が得られることがわかった。
関連論文リスト
- SPEED++: A Multilingual Event Extraction Framework for Epidemic Prediction and Preparedness [73.73883111570458]
多様な疾患や言語に対する流行イベント情報を抽出する,最初の多言語イベント抽出フレームワークを提案する。
各言語でデータに注釈を付けることは不可能であり、ゼロショット・クロスランガル・クロス・ディスリーズ・モデルを開発する。
われわれのフレームワークは、2019年12月初旬に中国のWeiboポストから、中国でのトレーニングなしに、新型コロナウイルスの流行を警告することができる。
論文 参考訳(メタデータ) (2024-10-24T03:03:54Z) - Leveraging Large Language Models and Weak Supervision for Social Media
data annotation: an evaluation using COVID-19 self-reported vaccination
tweets [1.9988653168573556]
ソーシャルメディアプラットフォームは、ワクチンに関する話題を議論するメディアとして人気を博している。
本研究では,新型コロナウイルス関連ツイートを識別するために,大規模言語モデル(GPT-4,弱監督)の使用状況を評価する。
論文 参考訳(メタデータ) (2023-09-12T18:18:23Z) - A Large-Scale Analysis of Persian Tweets Regarding Covid-19 Vaccination [1.2499537119440245]
新型コロナウイルスのパンデミックは私たちの生活、特に人々の交流に大きな影響を与えました。
Covid-19ワクチンの導入により、ワクチンの接種の有無に関して、肯定的、否定的な意見の両方が持ち上がった。
われわれは、Twitterから集めたデータを用いて、イランのコロナウイルスワクチンに関する世論を包括的に分析する。
論文 参考訳(メタデータ) (2023-02-09T09:08:19Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - Deep Learning Reveals Patterns of Diverse and Changing Sentiments
Towards COVID-19 Vaccines Based on 11 Million Tweets [3.319350419970857]
11,211,672人の新型コロナウイルス関連ツイートを2年間で2,203,681人を対象に分析した。
我々は、各ツイートの感情を自動的に検出するために、最先端モデルであるXLNetを用いてディープラーニング分類器を微調整した。
さまざまな人口集団のユーザーは、新型コロナウイルスワクチンに対する感情の異なるパターンを示した。
論文 参考訳(メタデータ) (2022-07-05T13:53:16Z) - A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter [4.696697601424039]
新型コロナウイルスワクチンに関連するツイートのデータセットの収集と公開について述べる。
このデータセットは、西ヨーロッパから収集された2,198,090のツイートのIDで構成され、そのうち17,934件は原住民の予防接種姿勢に注釈付けされている。
論文 参考訳(メタデータ) (2022-06-27T13:44:48Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Classifying vaccine sentiment tweets by modelling domain-specific
representation and commonsense knowledge into context-aware attentive GRU [9.8215089151757]
ワクチンのヘシタシーと拒絶はワクチン接種率の低いクラスターを生じさせ、ワクチン接種プログラムの有効性を低下させる。
ソーシャルメディアは、地理的な位置を含み、ワクチンに関する懸念を詳述することで、ワクチンの受け入れに対する新たなリスクを見積もる機会を提供する。
ワクチン関連ツイートなどのソーシャルメディア投稿を分類する手法では、一般的なドメインテキストで訓練された言語モデル(LM)を使用する。
本稿では、ワクチン関連ツイートで訓練されたドメイン固有LMを用いて相互接続されたコンポーネントで構成された新しいエンドツーエンドフレームワークについて、コンテキスト対応の双方向ゲート再帰ネットワーク(CK-BiGRU)にコモンセンス知識をモデル化する。
論文 参考訳(メタデータ) (2021-06-17T15:16:08Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
われわれは、Twitter上での予防接種に関する議論が、予防接種ヘシタントに対する潜在的な不安にどのように影響するかを調査する。
予防接種懐疑派や擁護派が独自の「エチョ室」に居住していることが判明した。
これらのエコーチャンバーの中心には熱心な支持者がいて、高い精度のネットワークとコンテンツベースの分類器を構築しています。
論文 参考訳(メタデータ) (2020-03-26T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。