論文の概要: Leveraging Large Language Models and Weak Supervision for Social Media
data annotation: an evaluation using COVID-19 self-reported vaccination
tweets
- arxiv url: http://arxiv.org/abs/2309.06503v1
- Date: Tue, 12 Sep 2023 18:18:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 16:39:45.750092
- Title: Leveraging Large Language Models and Weak Supervision for Social Media
data annotation: an evaluation using COVID-19 self-reported vaccination
tweets
- Title(参考訳): ソーシャルメディアデータアノテーションのための大規模言語モデルと弱スーパービジョンの活用 : COVID-19自己申告型予防接種ツイートを用いた評価
- Authors: Ramya Tekumalla and Juan M. Banda
- Abstract要約: ソーシャルメディアプラットフォームは、ワクチンに関する話題を議論するメディアとして人気を博している。
本研究では,新型コロナウイルス関連ツイートを識別するために,大規模言語モデル(GPT-4,弱監督)の使用状況を評価する。
- 参考スコア(独自算出の注目度): 1.9988653168573556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has presented significant challenges to the healthcare
industry and society as a whole. With the rapid development of COVID-19
vaccines, social media platforms have become a popular medium for discussions
on vaccine-related topics. Identifying vaccine-related tweets and analyzing
them can provide valuable insights for public health research-ers and
policymakers. However, manual annotation of a large number of tweets is
time-consuming and expensive. In this study, we evaluate the usage of Large
Language Models, in this case GPT-4 (March 23 version), and weak supervision,
to identify COVID-19 vaccine-related tweets, with the purpose of comparing
performance against human annotators. We leveraged a manu-ally curated
gold-standard dataset and used GPT-4 to provide labels without any additional
fine-tuning or instructing, in a single-shot mode (no additional prompting).
- Abstract(参考訳): 新型コロナウイルス(covid-19)のパンデミックは、医療業界や社会全体に大きな課題をもたらした。
新型コロナウイルスワクチンの急速な発展に伴い、ソーシャルメディアプラットフォームはワクチン関連の話題に関する議論の場となっている。
ワクチンに関連するツイートを特定し分析することで、公衆衛生研究や政策立案者に貴重な洞察を与えることができる。
しかし、大量のツイートのマニュアルアノテーションは、時間と費用がかかる。
本研究では,GPT-4(3月23日版)を用いて,ヒトアノテータとの性能を比較することを目的とした,COVID-19ワクチン関連ツイートを識別する手法について検討した。
gpt-4を使って、追加の微調整や指示なしで、シングルショットモードで(追加のプロンプトなしで)ラベルを提供しました。
関連論文リスト
- CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models [92.04812189642418]
我々はCARESを紹介し,医療領域全体での医療LVLMの信頼性を評価することを目的とする。
我々は,Med-LVLMの信頼性を,信頼性,公正性,安全性,プライバシ,堅牢性,5次元にわたって評価する。
論文 参考訳(メタデータ) (2024-06-10T04:07:09Z) - Analyzing COVID-19 Vaccination Sentiments in Nigerian Cyberspace:
Insights from a Manually Annotated Twitter Dataset [2.820717448579396]
ナイジェリアにおけるワクチンの受け入れについて,トランスフォーマーに基づく言語モデルを用いて検討する。
関連するハッシュタグとキーワードを用いて複数言語ツイートをクロールすることで,新しいデータセットを開発した。
分析と可視化の結果、ほとんどのツイートは新型コロナウイルスワクチンに関する中立的な感情を表しており、一部の人は肯定的な見解を示しています。
論文 参考訳(メタデータ) (2024-01-23T22:49:19Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - Vaccine Discourse on Twitter During the COVID-19 Pandemic [0.7161783472741748]
本研究は、Twitter上での新型コロナウイルスワクチンに関する投稿を調査し、ワクチンに対する否定的な姿勢を持つものに焦点を当てる。
新型コロナウイルスワクチンに関連する英国のツイート16,713,238件のデータセットが収集された。
新型コロナウイルスワクチンに関する否定性は、ワクチンのロールアウトとともに時間とともに低下していることを示す。
論文 参考訳(メタデータ) (2022-07-23T13:50:51Z) - Deep Learning Reveals Patterns of Diverse and Changing Sentiments
Towards COVID-19 Vaccines Based on 11 Million Tweets [3.319350419970857]
11,211,672人の新型コロナウイルス関連ツイートを2年間で2,203,681人を対象に分析した。
我々は、各ツイートの感情を自動的に検出するために、最先端モデルであるXLNetを用いてディープラーニング分類器を微調整した。
さまざまな人口集団のユーザーは、新型コロナウイルスワクチンに対する感情の異なるパターンを示した。
論文 参考訳(メタデータ) (2022-07-05T13:53:16Z) - A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter [4.696697601424039]
新型コロナウイルスワクチンに関連するツイートのデータセットの収集と公開について述べる。
このデータセットは、西ヨーロッパから収集された2,198,090のツイートのIDで構成され、そのうち17,934件は原住民の予防接種姿勢に注釈付けされている。
論文 参考訳(メタデータ) (2022-06-27T13:44:48Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic [72.44305630014534]
新型コロナウイルス(COVID-19)パンデミックの期間中に、26州で9,104人のTwitterユーザーから、口腔の健康関連ツイートを収集しました。
女性や若年者(19-29)は口腔の健康問題について話す傾向が強い。
新型コロナウイルス(COVID-19)のリスクが高い郡の人々は、歯の腐敗や歯の出血、歯の破折について語っています。
論文 参考訳(メタデータ) (2021-09-16T01:10:06Z) - Automatic Detection of COVID-19 Vaccine Misinformation with Graph Link
Prediction [2.0625936401496237]
新型コロナウイルス(COVID-19)ワクチンに関するソーシャルメディアの誤報によって引き起こされたワクチンのヘシタシーは、大きなハードルとなった。
CoVaxLiesは、新型コロナウイルスワクチンに関するいくつかの誤報のターゲットに関連する、新しいツイートのデータセットである。
本手法は,誤情報検出をグラフリンク予測問題として用いた誤情報知識グラフにCoVaxLiesを整理する。
論文 参考訳(メタデータ) (2021-08-04T23:27:10Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
われわれは、米国内での新型コロナウイルスの感染拡大に対する在宅勤務注文の影響を評価するために、詳細なモビリティデータを用いている。
一方向性グランガー因果性(一方向性グランガー因果性)は、家庭で毎日過ごす時間の割合の中央値から、2週間の遅れを伴うCOVID-19関連死亡件数の日数までである。
論文 参考訳(メタデータ) (2020-06-23T03:36:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。