論文の概要: ULTRA: Unleash LLMs' Potential for Event Argument Extraction through
Hierarchical Modeling and Pair-wise Refinement
- arxiv url: http://arxiv.org/abs/2401.13218v1
- Date: Wed, 24 Jan 2024 04:13:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 15:30:10.153898
- Title: ULTRA: Unleash LLMs' Potential for Event Argument Extraction through
Hierarchical Modeling and Pair-wise Refinement
- Title(参考訳): ultra:unleash llmsの階層モデリングとペアワイズによるイベント引数抽出の可能性
- Authors: Xinliang Frederick Zhang, Carter Blum, Temma Choji, Shalin Shah,
Alakananda Vempala
- Abstract要約: イベント引数抽出(EAE)は、あるイベントのロール固有のテキストスパン(例えば、引数)を特定するタスクである。
本稿では,イベントの議論をよりコスト効率よく抽出する階層的枠組みを提案する。
- 参考スコア(独自算出の注目度): 6.39480325103865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural extraction of events within discourse is critical since it avails
a deeper understanding of communication patterns and behavior trends. Event
argument extraction (EAE), at the core of event-centric understanding, is the
task of identifying role-specific text spans (i.e., arguments) for a given
event. Document-level EAE (DocEAE) focuses on arguments that are scattered
across an entire document. In this work, we explore the capabilities of open
source Large Language Models (LLMs), i.e., Flan-UL2, for the DocEAE task. To
this end, we propose ULTRA, a hierarchical framework that extracts event
arguments more cost-effectively -- the method needs as few as 50 annotations
and doesn't require hitting costly API endpoints. Further, it alleviates the
positional bias issue intrinsic to LLMs. ULTRA first sequentially reads text
chunks of a document to generate a candidate argument set, upon which ULTRA
learns to drop non-pertinent candidates through self-refinement. We further
introduce LEAFER to address the challenge LLMs face in locating the exact
boundary of an argument span. ULTRA outperforms strong baselines, which include
strong supervised models and ChatGPT, by 9.8% when evaluated by the exact match
(EM) metric.
- Abstract(参考訳): 会話内のイベントの構造的抽出は、コミュニケーションパターンや行動トレンドをより深く理解する上で重要である。
イベント引数抽出(英: Event argument extract、EAE)は、イベント中心の理解の中心にある、あるイベントに対する役割固有のテキストスパン(すなわち、引数)を特定するタスクである。
ドキュメントレベルEAE(DocEAE)は、ドキュメント全体に散在する引数に焦点を当てている。
本研究では,オープンソースのLarge Language Models(LLM),すなわちFlan-UL2のDocEAEタスク機能について検討する。
この目的のために、我々は、イベント引数をよりコスト効率よく抽出する階層的なフレームワークであるULTRAを提案する。
さらに、LSMに固有の位置バイアス問題を緩和する。
ultra firstは文書のテキストチャンクを順次読み込んで候補引数集合を生成し、ultraは自己定義を通じて無関係な候補をドロップすることを学習する。
さらに、LEAFERを導入して、LLMの課題に対処し、引数スパンの正確な境界を突き止める。
ultraは、強力な教師付きモデルやchatgptを含む強力なベースラインを、正確な一致(em)メトリックで評価すると9.8%上回っている。
関連論文リスト
- Idiosyncrasies in Large Language Models [54.26923012617675]
大規模言語モデル(LLM)における慣用句の公開と研究
LLM生成テキスト上に既存のテキスト埋め込みモデルを微調整することで、優れた分類精度が得られることが判明した。
我々はLLMを審査員として利用し、各モデルの慣用句の詳細かつオープンな記述を生成する。
論文 参考訳(メタデータ) (2025-02-17T18:59:02Z) - Context-Aware Hierarchical Merging for Long Document Summarization [56.96619074316232]
本論文では,階層的なマージをソース文書からコンテキストと統合する手法を提案する。
法的および物語的領域を表すデータセットの実験結果は、文脈的拡張がゼロショットと階層的な融合ベースラインを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2025-02-03T01:14:31Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - One Small and One Large for Document-level Event Argument Extraction [13.25071868664492]
文書レベルのイベント引数抽出(EAE)は、入力長の増加による2つの課題に直面する。
小言語モデル(SLM)に基づくCsEAE(CoおよびStructure Event Argument extract model)
第二の方法は、抽出タスクを大規模言語モデル(LLM)に適した生成タスクに変換する新しいプロンプトを導入する
論文 参考訳(メタデータ) (2024-11-08T14:44:01Z) - Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning [34.85741925091139]
Graph-DPEPフレームワークは、自然言語で提示された三重項の説明思想の背景にある。
我々は,サブグラフに埋め込まれた推論的思考を活用することで,型リスト全体の「アンサンブルプレイ」生成を開発する。
論文 参考訳(メタデータ) (2024-11-05T07:12:36Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
本稿では,PmptRepsを提案する。このPmptRepsは,トレーニングを必要とせず,コーパス全体から検索できる機能である。
検索システムは、高密度テキスト埋め込みとスパースバッグ・オブ・ワード表現の両方を利用する。
論文 参考訳(メタデータ) (2024-04-29T04:51:30Z) - MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation [104.6065882758648]
MAVEN-Argは、イベント検出、イベント引数抽出、イベント関係抽出をサポートする最初のオールインワンデータセットである。
EAEベンチマークでは、(1)162のイベントタイプと612の引数ロールをカバーする包括的なスキーマ、(2)98,591のイベントと290,613の引数を含む大規模なデータスケール、(3)EAEのすべてのタスク変種をサポートする包括的なアノテーションの3つの利点がある。
論文 参考訳(メタデータ) (2023-11-15T16:52:14Z) - Enhancing Document-level Event Argument Extraction with Contextual Clues
and Role Relevance [12.239459451494872]
ドキュメントレベルのイベント引数抽出は、ロングインプットとクロスセンス推論という新たな課題を引き起こす。
本研究では,Span-Triggerに基づくコンテキストプーリングと潜在ロールガイダンスモデルを提案する。
論文 参考訳(メタデータ) (2023-10-08T11:29:10Z) - PEARL: Prompting Large Language Models to Plan and Execute Actions Over
Long Documents [78.27865456183397]
長い文書に対する推論を改善するためのフレームワークであるPEARLを提案する。
PEARLの各ステージは、最小限の人間の入力でゼロショットまたは少数ショットのプロンプトによって実装される。
PEARLをQuALITYデータセットの挑戦的なサブセットで評価し、長い物語テキストに対して複雑な推論を必要とする質問を含む。
論文 参考訳(メタデータ) (2023-05-23T23:06:04Z) - Document-Level Event Role Filler Extraction using Multi-Granularity
Contextualized Encoding [40.13163091122463]
イベントロールフィラーに対応するテキストの幅を決定するために、より大きなコンテキストのビューを必要とするため、イベント抽出は難しいタスクである。
まず、文書レベルのロールフィラー抽出において、エンドツーエンドのニューラルシーケンスモデルがどのように機能するかを検討する。
私たちの最高のシステムは、以前の作業よりもかなり優れたパフォーマンスを示します。
論文 参考訳(メタデータ) (2020-05-13T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。