論文の概要: EndoGaussians: Single View Dynamic Gaussian Splatting for Deformable
Endoscopic Tissues Reconstruction
- arxiv url: http://arxiv.org/abs/2401.13352v1
- Date: Wed, 24 Jan 2024 10:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 14:55:43.437803
- Title: EndoGaussians: Single View Dynamic Gaussian Splatting for Deformable
Endoscopic Tissues Reconstruction
- Title(参考訳): EndoGaussian: 変形性内視鏡組織再建のためのシングルビューダイナミックガウススプラッティング
- Authors: Yangsen Chen, Hao Wang
- Abstract要約: 動的内視鏡3D再構成にガウススプラッティングを用いた新しいアプローチであるEndoGaussiansを紹介した。
本手法は,各種内視鏡データセットの定量的評価により,新しい最先端規格を定めている。
- 参考スコア(独自算出の注目度): 5.694872363688119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate 3D reconstruction of deformable soft body tissues from
endoscopic videos is a pivotal challenge in medical applications such as VR
surgery and medical image analysis. Existing methods often struggle with
accuracy and the ambiguity of hallucinated tissue parts, limiting their
practical utility. In this work, we introduce EndoGaussians, a novel approach
that employs Gaussian Splatting for dynamic endoscopic 3D reconstruction. This
method marks the first use of Gaussian Splatting in this context, overcoming
the limitations of previous NeRF-based techniques. Our method sets new
state-of-the-art standards, as demonstrated by quantitative assessments on
various endoscope datasets. These advancements make our method a promising tool
for medical professionals, offering more reliable and efficient 3D
reconstructions for practical applications in the medical field.
- Abstract(参考訳): 内視鏡的ビデオから変形可能な軟体組織の正確な3D再構成は、VR手術や医用画像解析などの医療応用において重要な課題である。
既存の方法は、しばしば、その実用性を制限する、幻覚組織部分の正確さと曖昧さに苦しむ。
本研究では,動的内視鏡3D再構成にガウススプラッティングを用いた新しいアプローチであるEndoGaussiansを紹介する。
この手法は、従来のNeRFベースの手法の限界を克服し、ガウススプラッティングのこの文脈での初めての使用を示す。
本手法は,各種内視鏡データセットの定量的評価により,新しい最先端規格を定めている。
これらの進歩により,本手法は医療従事者にとって有望なツールとなり,医療分野の実践的応用のために,より信頼性が高く効率的な3D再構成を提供する。
関連論文リスト
- SurgicalGS: Dynamic 3D Gaussian Splatting for Accurate Robotic-Assisted Surgical Scene Reconstruction [18.074890506856114]
幾何学的精度を向上した手術シーン再構築のための動的3次元ガウススプレイティングフレームワークであるStagementGSを提案する。
提案手法は,まず奥行き先を用いてガウス点雲を初期化し,深度変化の大きい画素を識別するために二元運動マスクを用い,フレーム間の深度マップから点雲を融合して初期化する。
フレキシブル変形モデルを用いて動的シーンを表現し、教師なし深度スムースネス制約とともに正規化深度正規化損失を導入し、より正確な幾何再構成を実現する。
論文 参考訳(メタデータ) (2024-10-11T22:46:46Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery [8.909938295090827]
NeRFベースの技術は、暗黙的にシーンを再構築する能力に注目が集まっている。
一方、3D-GSは3Dガウシアンを明示的に使用し、NeRFの複雑なボリュームレンダリングの代替として2D平面に投影するシーンを表現している。
この研究は、最先端のSOTA(State-of-the-art)アプローチを探求し、レビューし、彼らのイノベーションと実装原則について議論する。
論文 参考訳(メタデータ) (2024-08-08T12:51:23Z) - SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
内視鏡的ビデオにおける変形性組織の動的再構成は、ロボット支援手術の鍵となる技術である。
NeRFは、シーン内のオブジェクトの複雑な詳細をキャプチャするのに苦労します。
我々のネットワークは、レンダリング品質、レンダリング速度、GPU使用率など、多くの面で既存の手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-06T09:31:30Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAMは鏡視下手術の効率的なアプローチであり、合理化表現と微分ガウス化を統合している。
実験の結果,EndoGSLAMは従来型あるいは神経型SLAMアプローチよりも術中可用性と再建品質のトレードオフが良好であることがわかった。
論文 参考訳(メタデータ) (2024-03-22T11:27:43Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - EndoGS: Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting [20.848027172010358]
変形性内視鏡組織再建に対する Gaussian Splatting 法を施行した。
提案手法は,動的シーンを扱うための変形場,空間時空間マスクを用いた深度誘導型監視,表面整列正規化項を含む。
結果として、EndoGSは単一視点ビデオ、推定深度マップ、ラベル付きツールマスクから高品質な変形可能な内視鏡組織を再構成しレンダリングする。
論文 参考訳(メタデータ) (2024-01-21T16:14:04Z) - 3D Guidewire Shape Reconstruction from Monoplane Fluoroscopic Images [7.0968125126570625]
本稿では,最新の血管内シミュレータCathSimを用いて3Dガイドワイヤを再構築する手法を提案する。
我々の3D-FGRNは、シミュレーションされた単平面蛍光画像から従来の三角測量と同等の結果が得られる。
論文 参考訳(メタデータ) (2023-11-19T03:20:42Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。