論文の概要: SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2401.13560v4
- Date: Sun, 15 Sep 2024 13:26:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 03:05:43.336368
- Title: SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation
- Title(参考訳): SegMamba:3D画像セグメンテーションのための長距離連続モデリングマンバ
- Authors: Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, Lei Zhu,
- Abstract要約: 我々は,新しい3次元医用画像textbfSegmentation textbfMambaモデルであるSegMambaを紹介した。
SegMambaは、状態空間モデルの観点から、全ボリューム特徴モデリングに優れています。
BraTS2023データセットの実験では、SegMambaの有効性と効率が示されている。
- 参考スコア(独自算出の注目度): 16.476244833079182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Transformer architecture has shown a remarkable ability in modeling global relationships. However, it poses a significant computational challenge when processing high-dimensional medical images. This hinders its development and widespread adoption in this task. Mamba, as a State Space Model (SSM), recently emerged as a notable manner for long-range dependencies in sequential modeling, excelling in natural language processing filed with its remarkable memory efficiency and computational speed. Inspired by its success, we introduce SegMamba, a novel 3D medical image \textbf{Seg}mentation \textbf{Mamba} model, designed to effectively capture long-range dependencies within whole volume features at every scale. Our SegMamba, in contrast to Transformer-based methods, excels in whole volume feature modeling from a state space model standpoint, maintaining superior processing speed, even with volume features at a resolution of {$64\times 64\times 64$}. Comprehensive experiments on the BraTS2023 dataset demonstrate the effectiveness and efficiency of our SegMamba. The code for SegMamba is available at: https://github.com/ge-xing/SegMamba
- Abstract(参考訳): Transformerアーキテクチャは、グローバルな関係をモデル化する際、顕著な能力を示している。
しかし、これは高次元医用画像の処理において重要な計算課題となる。
これにより、このタスクの開発が妨げられ、広く採用される。
状態空間モデル(SSM)としてのMambaは、最近、シーケンシャルモデリングにおける長距離依存の顕著な方法として登場し、その顕著なメモリ効率と計算速度で自然言語処理に優れていた。
その成功にインスパイアされたSegMambaは,全ボリューム特徴の長距離依存性を各スケールで効果的にキャプチャするように設計された,新しい3次元医用画像である。
我々のSegMambaは、Transformerベースの手法とは対照的に、状態空間モデルの観点から全容積特徴モデリングを抜粋し、$64\times 64\times 64$}の解像度のボリューム特徴であっても、優れた処理速度を維持する。
BraTS2023データセットに関する包括的な実験は、SegMambaの有効性と効率を実証している。
SegMambaのコードは、https://github.com/ge-xing/SegMambaで入手できる。
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - Taipan: Efficient and Expressive State Space Language Models with Selective Attention [100.16383527459429]
自然言語処理(NLP)における長文言語モデリングの課題
Mambaのような最近のステートスペースモデル(SSM)は、メモリ使用量を一定に抑える代替手段を提供するが、大規模なコンテキスト内検索を必要とするタスクでは性能が劣る。
我々は,Mamba-2と選択注意層(SAL)を組み合わせた新しいハイブリッドアーキテクチャであるTaipanを紹介する。
我々の実験は、様々なスケールやタスクにまたがる優れたパフォーマンスを示し、より効率的な長文言語モデリングのための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-24T09:25:37Z) - Scalable Autoregressive Image Generation with Mamba [23.027439743155192]
本稿では,マンバアーキテクチャに基づく自己回帰(AR)画像生成モデルであるAiMを紹介する。
Mamba(マンバ)は、線形時間による長周期モデリングに特有な性能を特徴とする、新しい状態空間モデルである。
パラメータ数は128Mから1.3Bまで様々である。
論文 参考訳(メタデータ) (2024-08-22T09:27:49Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - ZigMa: A DiT-style Zigzag Mamba Diffusion Model [22.68317748373856]
我々は、Mambaと呼ばれる状態空間モデルの長いシーケンスモデリング機能を活用し、その視覚データ生成への適用性を高めることを目指している。
我々は,Zigzag Mamba という,シンプルな,プラグアンドプレイのゼロパラメータ法を導入し,Mamba ベースのベースラインを上回ります。
Zigzag Mamba と Interpolant フレームワークを統合し,大規模なビジュアルデータセット上でのモデルのスケーラビリティについて検討する。
論文 参考訳(メタデータ) (2024-03-20T17:59:14Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
本稿では,医療画像分割のためのLKM-U-shape Network(LKM-UNet)を提案する。
LKM-UNetの際立った特徴は、小さなカーネルベースのCNNやトランスフォーマーに比べて、局所的な空間モデリングに優れた大きなMambaカーネルの利用である。
包括的実験は、大規模なマンバ核を用いて大きな受容場を実現することの実現可能性と有効性を示す。
論文 参考訳(メタデータ) (2024-03-12T05:34:51Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
Mamba-UNetは,医療画像のセグメンテーションにおいてU-Netとマンバの能力を相乗化する新しいアーキテクチャである。
Mamba-UNetは純粋にVisual Mamba(VMamba)ベースのエンコーダデコーダ構造を採用しており、ネットワークのさまざまなスケールで空間情報を保存するためにスキップ接続を注入している。
論文 参考訳(メタデータ) (2024-02-07T18:33:04Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
マンババイト(英: MambaByte)は、マンバSSMがバイト配列で自己回帰的に訓練したトークンレス適応である。
MambaByteは、言語モデリングタスクにおいて、最先端のサブワードトランスフォーマーよりも優れています。
論文 参考訳(メタデータ) (2024-01-24T18:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。