論文の概要: MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2408.08070v2
- Date: Fri, 18 Apr 2025 13:21:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 23:32:19.038837
- Title: MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
- Title(参考訳): マンバミム:国家空間トーケン補間による事前訓練マンバとその医用画像セグメンテーションへの応用
- Authors: Fenghe Tang, Bingkun Nian, Yingtai Li, Zihang Jiang, Jie Yang, Wei Liu, S. Kevin Zhou,
- Abstract要約: 我々はMambaMIMと呼ばれる汎用的な事前学習フレームワークを提案する。
MambaMIMはマスキングシーケンス内の状態空間の因果関係を学習する。
我々は6.8KCTの大規模データセットでMambaMIMを事前訓練する。
- 参考スコア(独自算出の注目度): 23.67774523461722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the state space model Mamba has demonstrated efficient long-sequence modeling capabilities, particularly for addressing long-sequence visual tasks in 3D medical imaging. However, existing generative self-supervised learning methods have not yet fully unleashed Mamba's potential for handling long-range dependencies because they overlook the inherent causal properties of state space sequences in masked modeling. To address this challenge, we propose a general-purpose pre-training framework called MambaMIM, a masked image modeling method based on a novel TOKen-Interpolation strategy (TOKI) for the selective structure state space sequence, which learns causal relationships of state space within the masked sequence. Further, MambaMIM introduces a bottom-up 3D hybrid masking strategy to maintain a masking consistency across different architectures and can be used on any single or hybrid Mamba architecture to enhance its multi-scale and long-range representation capability. We pre-train MambaMIM on a large-scale dataset of 6.8K CT scans and evaluate its performance across eight public medical segmentation benchmarks. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for medical image pre-training. In particular, when we apply the MambaMIM to a customized architecture that hybridizes MedNeXt and Vision Mamba, we consistently obtain the state-of-the-art segmentation performance. The code is available at: https://github.com/FengheTan9/MambaMIM.
- Abstract(参考訳): 近年、状態空間モデルであるMambaは、特に3次元医用画像の長周期視覚課題に対処するために、効率的な長周期モデリング機能を実証している。
しかし、マスク付きモデリングにおける状態空間列の因果性を見落としているため、既存の生成自己教師付き学習手法はまだ、長距離依存を扱うマンバの可能性を十分に解き放たていない。
この課題に対処するために,マスク付き状態空間列における状態空間の因果関係を学習する,新しい構造状態空間列のためのTOKI(TOKen-Interpolation Strategy)に基づくマスク付き画像モデリング手法であるMambaMIMを提案する。
さらに、MambaMIMはボトムアップの3Dハイブリッドマスキング戦略を導入し、異なるアーキテクチャ間のマスキング一貫性を維持し、マルチスケールおよび長距離表現能力を高めるために、任意の単一またはハイブリッドのMambaアーキテクチャで使用することができる。
我々は6.8KCTの大規模データセットでMambaMIMを事前訓練し、8つの公開医療セグメンテーションベンチマークでその性能を評価する。
広範囲な下流実験は、医療画像の事前トレーニングにMambaを使用することの可能性と進歩を明らかにしている。
特に、MedNeXtとVision Mambaをハイブリッド化したカスタマイズアーキテクチャにMambaMIMを適用すると、最先端セグメンテーション性能が一貫して得られます。
コードは、https://github.com/FengheTan9/MambaMIM.comで入手できる。
関連論文リスト
- Mamba-Sea: A Mamba-based Framework with Global-to-Local Sequence Augmentation for Generalizable Medical Image Segmentation [40.802307155824394]
ドメインシフト問題下でのモデルの一般化性を改善するため,グローバルからローカルへのシーケンス拡張を取り入れた新しいMambaベースのフレームワークであるMamba-Seaを提案する。
提案手法は,従来のSOTAの88.61%を超え,前立腺データセット上で90%のDice係数を初めて上回った手法である。
論文 参考訳(メタデータ) (2025-04-24T12:57:25Z) - DefMamba: Deformable Visual State Space Model [65.50381013020248]
我々はDefMambaと呼ばれる新しい視覚基盤モデルを提案する。
変形性スキャン(DS)戦略を組み合わせることで、画像構造を学習し、オブジェクトの細部の変化を検出する能力を大幅に向上する。
多くの実験により、DefMambaは様々な視覚的タスクで最先端のパフォーマンスを達成することが示されている。
論文 参考訳(メタデータ) (2025-04-08T08:22:54Z) - TransMamba: Fast Universal Architecture Adaption from Transformers to Mamba [88.31117598044725]
本稿では,既存のTransformerモデルの知識を,TransMambaと呼ばれる代替アーキテクチャのMambaに伝達するクロスアーキテクチャトレーニングについて検討する。
提案手法では,新しいマンバモデルの訓練を高速化し,ユニモーダルタスクおよびクロスモーダルタスクにおける有効性を確保するための2段階戦略を採用している。
クロスモーダル学習のために,言語認識をMambaの視覚的特徴に統合し,Mambaアーキテクチャのクロスモーダルインタラクション能力を向上するクロスマンバモジュールを提案する。
論文 参考訳(メタデータ) (2025-02-21T01:22:01Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mambaは、新しいステートスペースモデル(SSM)として、自然言語処理やコンピュータビジョンに広く応用されている。
本稿では,MambaとU-Net for SEタスクを統合する革新的なアーキテクチャであるMamba-SEUNetを紹介する。
論文 参考訳(メタデータ) (2024-12-21T13:43:51Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond [2.838321145442743]
Mambaは、医用画像分析におけるテンプレートベースのディープラーニングアプローチに代わるものだ。
線形時間の複雑さがあり、トランスよりも大幅に改善されている。
Mambaは、注意機構のない長いシーケンスを処理し、高速な推論を可能にし、メモリを少なくする。
論文 参考訳(メタデータ) (2024-10-03T10:23:03Z) - MAP: Unleashing Hybrid Mamba-Transformer Vision Backbone's Potential with Masked Autoregressive Pretraining [23.37555991996508]
本稿では,Masked Autoregressive Pretraining (MAP) を提案する。
MAPで事前学習したMambaアーキテクチャとハイブリッドMamba-Transformerビジョンバックボーンネットワークが,他の事前学習戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-01T17:05:08Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
本研究では,マンバに特化して設計された文脈拡張手法であるDeciMambaを紹介する。
DeciMambaは、トレーニング中に見たものよりも25倍長く、余分な計算資源を使わずに、コンテキスト長を外挿できることを示す。
論文 参考訳(メタデータ) (2024-06-20T17:40:18Z) - MambaOut: Do We Really Need Mamba for Vision? [70.60495392198686]
状態空間モデル(SSM)のRNNライクなトークンミキサーを備えたアーキテクチャであるMambaが最近導入され、注意機構の2次複雑さに対処した。
本論文は,マンバが長周期および自己回帰特性を有するタスクに理想的に適していることを概念的に結論づける。
我々は,コアトークンミキサーであるSSMを除去しながら,Mambaブロックを積み重ねることで,MambaOutという名前の一連のモデルを構築する。
論文 参考訳(メタデータ) (2024-05-13T17:59:56Z) - Vision Mamba: A Comprehensive Survey and Taxonomy [11.025533218561284]
状態空間モデル (State Space Model, SSM) は、動的システムの振る舞いを記述・解析するために用いられる数学的モデルである。
最新の状態空間モデルに基づいて、Mambaは時間変化パラメータをSSMにマージし、効率的なトレーニングと推論のためのハードウェア認識アルゴリズムを定式化する。
Mambaは、Transformerを上回る可能性のある、新たなAIアーキテクチャになることが期待されている。
論文 参考訳(メタデータ) (2024-05-07T15:30:14Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
最近の選択的構造化状態空間モデルであるMambaは、ロングシーケンスモデリングにおいて優れている。
2024年1月以降、マンバは多様なコンピュータビジョンタスクに積極的に適用されてきた。
本稿では,200以上の論文を分析し,マンバの視覚的アプローチを概観する。
論文 参考訳(メタデータ) (2024-04-29T16:51:30Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamberは、マルチモーダルなMamba TwisterブロックとMambaのパワーを統合する新しいRISアーキテクチャである。
Mamba Twisterは画像とテキストのインタラクションを明示的にモデル化し、独自のチャネルと空間的ツイスト機構を通じてテキストと視覚的特徴を融合する。
論文 参考訳(メタデータ) (2024-03-26T16:27:37Z) - MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology [10.933433327636918]
MIL(Multiple Instance Learning)は、WSI(Whole Slide Images)内の識別的特徴表現を計算病理学で抽出する主要なパラダイムとして登場した。
本稿では,線形複雑度を持つ長周期モデリングのために,Selective Scan Space State Sequential Model(Mamba)をMIL(Multiple Instance Learning)に組み込む。
提案するフレームワークは,最先端のMIL手法に対して良好に機能する。
論文 参考訳(メタデータ) (2024-03-11T15:17:25Z) - MedMamba: Vision Mamba for Medical Image Classification [0.0]
視覚変換器(ViT)と畳み込みニューラルネットワーク(CNN)は医療画像分類タスクで広く研究され、広く利用されている。
近年の研究では、マンバで表される状態空間モデル(SSM)が、長距離依存を効果的にモデル化できることが示されている。
我々は、医用画像の一般的な分類のための最初のビジョンマンバであるメドマンバを提案する。
論文 参考訳(メタデータ) (2024-03-06T16:49:33Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
Mamba-UNetは,医療画像のセグメンテーションにおいてU-Netとマンバの能力を相乗化する新しいアーキテクチャである。
Mamba-UNetは純粋にVisual Mamba(VMamba)ベースのエンコーダデコーダ構造を採用しており、ネットワークのさまざまなスケールで空間情報を保存するためにスキップ接続を注入している。
論文 参考訳(メタデータ) (2024-02-07T18:33:04Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。