Towards Smart Healthcare: Challenges and Opportunities in IoT and ML
- URL: http://arxiv.org/abs/2312.05530v2
- Date: Fri, 12 Jan 2024 14:55:48 GMT
- Title: Towards Smart Healthcare: Challenges and Opportunities in IoT and ML
- Authors: Munshi Saifuzzaman and Tajkia Nuri Ananna
- Abstract summary: The COVID-19 pandemic and other ongoing health crises have underscored the need for prompt healthcare services worldwide.
This chapter focuses exclusively on exploring the hurdles encountered when integrating machine learning methods into the IoT healthcare sector.
It offers a comprehensive summary of current research challenges and potential opportunities, categorized into three scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic and other ongoing health crises have underscored the
need for prompt healthcare services worldwide. The traditional healthcare
system, centered around hospitals and clinics, has proven inadequate in the
face of such challenges. Intelligent wearable devices, a key part of modern
healthcare, leverage Internet of Things technology to collect extensive data
related to the environment as well as psychological, behavioral, and physical
health. However, managing the substantial data generated by these wearables and
other IoT devices in healthcare poses a significant challenge, potentially
impeding decision-making processes. Recent interest has grown in applying data
analytics for extracting information, gaining insights, and making predictions.
Additionally, machine learning, known for addressing various big data and
networking challenges, has seen increased implementation to enhance IoT systems
in healthcare. This chapter focuses exclusively on exploring the hurdles
encountered when integrating ML methods into the IoT healthcare sector. It
offers a comprehensive summary of current research challenges and potential
opportunities, categorized into three scenarios: IoT-based, ML-based, and the
implementation of machine learning methodologies in the IoT-based healthcare
industry. This compilation will assist future researchers, healthcare
professionals, and government agencies by offering valuable insights into
recent smart healthcare advancements.
Related papers
- Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery [1.03590082373586]
The review highlights various types of mHealth applications used for remote monitoring, such as telemedicine platforms, mobile apps for chronic disease management, and wearable devices.
The benefits of these applications include improved patient outcomes, increased access to healthcare, reduced healthcare costs, and addressing healthcare disparities.
However, challenges and limitations, such as privacy and security concerns, lack of technical infrastructure, regulatory is-sues, data accuracy, user adherence, and the digital divide, need to be addressed.
arXiv Detail & Related papers (2024-08-26T11:32:43Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z) - Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions [9.662980267339375]
We focus on medical applications of acFL, particularly in the context of global cancer diagnosis.
Recent developments in acFL have made it possible to train complex machine-learned models in a distributed manner.
arXiv Detail & Related papers (2022-08-05T21:41:15Z) - Applications of Machine Learning in Healthcare and Internet of Things
(IOT): A Comprehensive Review [2.1270496914042996]
We present an extensive review of the state-of-the-art machine learning applications particularly in healthcare.
We highlight some open-ended issues of IoT in healthcare that leaves further research studies and investigation for scientists.
arXiv Detail & Related papers (2022-02-06T21:56:39Z) - Internet-of-Things Devices and Assistive Technologies for Healthcare:
Applications, Challenges, and Opportunities [5.8497361730688695]
Hospitals and clinics no longer have the ability to accommodate large numbers of incoming patients.
It is clear that the current state of the health industry needs to improve its valuable and limited resources.
The evolution of the Internet of Things (IoT) devices along with assistive technologies can alleviate the problem in healthcare.
arXiv Detail & Related papers (2021-07-11T12:18:12Z) - Smart Healthcare in the Age of AI: Recent Advances, Challenges, and
Future Prospects [3.3336265497547126]
The smart healthcare system is a topic of recently growing interest and has become increasingly required due to major developments in modern technologies.
This paper is aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks, including social robots developed for the ambient assisted living environment.
arXiv Detail & Related papers (2021-06-24T05:10:47Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.