Unified Spatio-Temporal Tri-Perspective View Representation for 3D Semantic Occupancy Prediction
- URL: http://arxiv.org/abs/2401.13785v2
- Date: Thu, 4 Apr 2024 13:52:17 GMT
- Title: Unified Spatio-Temporal Tri-Perspective View Representation for 3D Semantic Occupancy Prediction
- Authors: Sathira Silva, Savindu Bhashitha Wannigama, Gihan Jayatilaka, Muhammad Haris Khan, Roshan Ragel,
- Abstract summary: This study introduces architecture2TPVFormer for temporally coherent 3D semantic occupancy prediction.
We enrich the prior process by including temporal cues using a novel temporal cross-view hybrid attention mechanism.
Experimental evaluations demonstrate a substantial 4.1% improvement in mean Intersection over Union for 3D Semantic Occupancy.
- Score: 6.527178779672975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Holistic understanding and reasoning in 3D scenes play a vital role in the success of autonomous driving systems. The evolution of 3D semantic occupancy prediction as a pretraining task for autonomous driving and robotic downstream tasks capture finer 3D details compared to methods like 3D detection. Existing approaches predominantly focus on spatial cues such as tri-perspective view embeddings (TPV), often overlooking temporal cues. This study introduces a spatiotemporal transformer architecture S2TPVFormer for temporally coherent 3D semantic occupancy prediction. We enrich the prior process by including temporal cues using a novel temporal cross-view hybrid attention mechanism (TCVHA) and generate spatiotemporal TPV embeddings (i.e. S2TPV embeddings). Experimental evaluations on the nuScenes dataset demonstrate a substantial 4.1% improvement in mean Intersection over Union (mIoU) for 3D Semantic Occupancy compared to TPVFormer, confirming the effectiveness of the proposed S2TPVFormer in enhancing 3D scene perception.
Related papers
- FastOcc: Accelerating 3D Occupancy Prediction by Fusing the 2D
Bird's-Eye View and Perspective View [46.81548000021799]
In autonomous driving, 3D occupancy prediction outputs voxel-wise status and semantic labels for more comprehensive understandings of 3D scenes.
Recent researchers have extensively explored various aspects of this task, including view transformation techniques, ground-truth label generation, and elaborate network design.
A new method, dubbed FastOcc, is proposed to accelerate the model while keeping its accuracy.
Experiments on the Occ3D-nuScenes benchmark demonstrate that our FastOcc achieves a fast inference speed.
arXiv Detail & Related papers (2024-03-05T07:01:53Z) - OccFlowNet: Towards Self-supervised Occupancy Estimation via
Differentiable Rendering and Occupancy Flow [0.6577148087211809]
We present a novel approach to occupancy estimation inspired by neural radiance field (NeRF) using only 2D labels.
We employ differentiable volumetric rendering to predict depth and semantic maps and train a 3D network based on 2D supervision only.
arXiv Detail & Related papers (2024-02-20T08:04:12Z) - Visual Point Cloud Forecasting enables Scalable Autonomous Driving [28.376086570498952]
Visual autonomous driving applications require features encompassing semantics, 3D geometry, and temporal information simultaneously.
We present ViDAR, a general model to pre-train downstream visual encoders.
Experiments show significant gain in downstream tasks, e.g., 3.1% NDS on 3D detection, 10% error reduction on motion forecasting, and 15% less collision rate on planning.
arXiv Detail & Related papers (2023-12-29T15:44:13Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - Uncertainty-aware State Space Transformer for Egocentric 3D Hand
Trajectory Forecasting [79.34357055254239]
Hand trajectory forecasting is crucial for enabling a prompt understanding of human intentions when interacting with AR/VR systems.
Existing methods handle this problem in a 2D image space which is inadequate for 3D real-world applications.
We set up an egocentric 3D hand trajectory forecasting task that aims to predict hand trajectories in a 3D space from early observed RGB videos in a first-person view.
arXiv Detail & Related papers (2023-07-17T04:55:02Z) - Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction [84.94140661523956]
We propose a tri-perspective view (TPV) representation which accompanies BEV with two additional perpendicular planes.
We model each point in the 3D space by summing its projected features on the three planes.
Experiments show that our model trained with sparse supervision effectively predicts the semantic occupancy for all voxels.
arXiv Detail & Related papers (2023-02-15T17:58:10Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
We propose a spatial-temporal feature learning scheme towards a set of more representative features for perception, prediction and planning tasks simultaneously.
To the best of our knowledge, we are the first to systematically investigate each part of an interpretable end-to-end vision-based autonomous driving system.
arXiv Detail & Related papers (2022-07-15T16:57:43Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
We introduce a-temporal representation learning framework, capable of learning from unlabeled tasks.
Inspired by how infants learn from visual data in the wild, we explore rich cues derived from the 3D data.
STRL takes two temporally-related frames from a 3D point cloud sequence as the input, transforms it with the spatial data augmentation, and learns the invariant representation self-supervisedly.
arXiv Detail & Related papers (2021-09-01T04:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.