論文の概要: The Calibration Gap between Model and Human Confidence in Large Language
Models
- arxiv url: http://arxiv.org/abs/2401.13835v1
- Date: Wed, 24 Jan 2024 22:21:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 16:08:37.529331
- Title: The Calibration Gap between Model and Human Confidence in Large Language
Models
- Title(参考訳): 大規模言語モデルにおけるモデルと人間の自信のキャリブレーションギャップ
- Authors: Mark Steyvers, Heliodoro Tejeda, Aakriti Kumar, Catarina Belem, Sheer
Karny, Xinyue Hu, Lukas Mayer, Padhraic Smyth
- Abstract要約: 大規模言語モデル(LLM)は、その予測がどの程度正確であるかを正確に評価し、伝達できるという意味で、十分に校正される必要がある。
最近の研究は、内部LCMの信頼性評価の品質に焦点を当てている。
本稿では,LLMの応答における外部人間の信頼度とモデルの内部信頼度との相違について検討する。
- 参考スコア(独自算出の注目度): 14.539888672603743
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: For large language models (LLMs) to be trusted by humans they need to be
well-calibrated in the sense that they can accurately assess and communicate
how likely it is that their predictions are correct. Recent work has focused on
the quality of internal LLM confidence assessments, but the question remains of
how well LLMs can communicate this internal model confidence to human users.
This paper explores the disparity between external human confidence in an LLM's
responses and the internal confidence of the model. Through experiments
involving multiple-choice questions, we systematically examine human users'
ability to discern the reliability of LLM outputs. Our study focuses on two key
areas: (1) assessing users' perception of true LLM confidence and (2)
investigating the impact of tailored explanations on this perception. The
research highlights that default explanations from LLMs often lead to user
overestimation of both the model's confidence and its' accuracy. By modifying
the explanations to more accurately reflect the LLM's internal confidence, we
observe a significant shift in user perception, aligning it more closely with
the model's actual confidence levels. This adjustment in explanatory approach
demonstrates potential for enhancing user trust and accuracy in assessing LLM
outputs. The findings underscore the importance of transparent communication of
confidence levels in LLMs, particularly in high-stakes applications where
understanding the reliability of AI-generated information is essential.
- Abstract(参考訳): 大型言語モデル(LLM)が人間に信頼されるためには、その予測が正しいかどうかを正確に評価し、伝達できるという意味で、十分な校正が必要である。
最近の研究は内部LCMの信頼性評価の品質に焦点が当てられているが、LLMが内部モデルの信頼性をいかに人間に伝達できるかについては疑問が残る。
本稿では、LCMの応答における外部人間の信頼とモデルの内部信頼の相違について考察する。
複数選択質問を含む実験を通じて,LLM出力の信頼性を識別する人間の能力を体系的に検証した。
本研究は,(1)利用者のLDM信頼感の評価と,(2)調整された説明が認知に与える影響について検討する。
この研究は、LLMのデフォルトの説明は、しばしばモデルの信頼性と精度の両方をユーザーの過大評価に導くことを強調している。
LLMの内部信頼度をより正確に反映するように説明を変更することで、ユーザ認識の大幅な変化を観察し、モデルの実際の信頼度とより密に調整する。
この説明的アプローチによる調整は、LCM出力を評価する際のユーザ信頼と精度を高める可能性を示している。
この知見は、特にAI生成情報の信頼性の理解が不可欠である高精度なアプリケーションにおいて、LLMにおける信頼性レベルの透過的なコミュニケーションの重要性を強調している。
関連論文リスト
- On Verbalized Confidence Scores for LLMs [25.160810008907397]
大規模言語モデル(LLM)の不確実性定量化は、その応答に対するより人間的な信頼を確立することができる。
この研究は、出力トークンの一部として信頼度スコアで不確実性を言語化するようLLM自身に求めることに重点を置いている。
我々は、異なるデータセット、モデル、およびプロンプトメソッドに関して、言語化された信頼度スコアの信頼性を評価する。
論文 参考訳(メタデータ) (2024-12-19T11:10:36Z) - Learning to Route LLMs with Confidence Tokens [43.63392143501436]
大規模言語モデルが回答の信頼性を確実に示すことができる範囲について検討する。
本稿では,LLMの信頼性を確実に表現するための軽量トレーニング戦略であるSelf-REFを提案する。
信頼度を言語化したり、トークンの確率を調べるといった従来の手法と比較して、信頼度トークンは下流のルーティングや拒否学習タスクにおいて著しく改善されていることを実証的に示す。
論文 参考訳(メタデータ) (2024-10-17T07:28:18Z) - Understanding Knowledge Drift in LLMs through Misinformation [11.605377799885238]
大規模言語モデル(LLM)は多くのアプリケーションに革命をもたらしました。
我々は,QnAシナリオで誤情報に遭遇した場合に,現状のLCMの事実的不正確性に対する感受性を解析する。
実験の結果,LLMの不確実性が56.6%まで増加することが判明した。
論文 参考訳(メタデータ) (2024-09-11T08:11:16Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - LACIE: Listener-Aware Finetuning for Confidence Calibration in Large Language Models [69.68379406317682]
暗黙的および明示的な信頼マーカーを校正するリスナー対応微調整法 (LACIE) を提案する。
我々は,LACIEがリスナーをモデル化し,回答が正しいかどうかだけでなく,リスナーに受け入れられるかどうかを考察する。
LACIEによるトレーニングの結果、正しい回答の受け入れレベルを維持しながら、誤った回答が受け入れられる割合が47%減少することがわかった。
論文 参考訳(メタデータ) (2024-05-31T17:16:38Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelfは、大規模言語モデルに、より正確なきめ細かな信頼推定を表現するためのトレーニングフレームワークである。
さらに、SaySelf は LLM に対して、パラメトリック知識のギャップを明確に識別する自己反射的合理性を生成するよう指示する。
生成した自己反射的理性は合理的であり、キャリブレーションにさらに貢献できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:21:16Z) - "I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust [51.542856739181474]
不確実性の自然言語表現の違いが、参加者の信頼、信頼、全体的なタスクパフォーマンスにどのように影響するかを示す。
その結果, 一人称表情は, 参加者のシステムに対する信頼度を低下させ, 参加者の正確性を高めつつ, システムの回答に同調する傾向にあることがわかった。
以上の結果から,不確実性の自然言語表現の使用は,LLMの過度な依存を軽減するための効果的なアプローチである可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-01T16:43:55Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
ファクト・アンド・リフレクション(FaR)プロンプトを提案し,LLMキャリブレーションを2ステップで改善する。
実験の結果、FaRはキャリブレーションが大幅に向上し、期待される誤差を23.5%下げた。
FaRは、信頼性の低いシナリオにおいて、言語的に関心を表現できる能力さえも持っています。
論文 参考訳(メタデータ) (2024-02-27T01:37:23Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
従来の信頼性推論手法は、内部モデル情報やモデル微調整へのホワイトボックスアクセスに依存していた。
これにより、不確実性推定のためのブラックボックスアプローチの未解決領域を探索する必要性が高まっている。
言語的信頼を導き出すための戦略の推進、複数の応答を生成するためのサンプリング方法、一貫性を計算するための集約手法の3つの要素からなる体系的フレームワークを定義する。
論文 参考訳(メタデータ) (2023-06-22T17:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。