論文の概要: Factual Confidence of LLMs: on Reliability and Robustness of Current Estimators
- arxiv url: http://arxiv.org/abs/2406.13415v1
- Date: Wed, 19 Jun 2024 10:11:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 20:12:53.164799
- Title: Factual Confidence of LLMs: on Reliability and Robustness of Current Estimators
- Title(参考訳): LLMのFactual Confidence:電流推定器の信頼性とロバスト性について
- Authors: Matéo Mahaut, Laura Aina, Paula Czarnowska, Momchil Hardalov, Thomas Müller, Lluís Màrquez,
- Abstract要約: 大規模言語モデル(LLM)は、その答えの事実において信頼できない傾向にある。
本稿では,事実信頼度の推定者の調査と実証的比較について述べる。
実験により, 訓練された隠れ状態プローブが最も信頼性の高い信頼度を推定できることが示唆された。
- 参考スコア(独自算出の注目度): 6.403926452181712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) tend to be unreliable in the factuality of their answers. To address this problem, NLP researchers have proposed a range of techniques to estimate LLM's confidence over facts. However, due to the lack of a systematic comparison, it is not clear how the different methods compare to one another. To fill this gap, we present a survey and empirical comparison of estimators of factual confidence. We define an experimental framework allowing for fair comparison, covering both fact-verification and question answering. Our experiments across a series of LLMs indicate that trained hidden-state probes provide the most reliable confidence estimates, albeit at the expense of requiring access to weights and training data. We also conduct a deeper assessment of factual confidence by measuring the consistency of model behavior under meaning-preserving variations in the input. We find that the confidence of LLMs is often unstable across semantically equivalent inputs, suggesting that there is much room for improvement of the stability of models' parametric knowledge. Our code is available at (https://github.com/amazon-science/factual-confidence-of-llms).
- Abstract(参考訳): 大規模言語モデル(LLM)は、その答えの事実において信頼できない傾向にある。
この問題に対処するため、NLP研究者はLLMの事実に対する信頼度を推定する様々な手法を提案している。
しかし、体系的な比較が欠如しているため、異なる手法が相互にどのように比較されるかは明らかでない。
このギャップを埋めるために,実感的信頼度の推定者の調査と実証的比較を行った。
我々は、事実検証と質問応答の両方をカバーし、公正な比較を可能にする実験的なフレームワークを定義する。
LLMの一連の実験は、トレーニングされた隠れ状態プローブが、重量データやトレーニングデータへのアクセスを犠牲にしながら、最も信頼性の高い信頼度推定を提供することを示している。
また,入力中の意味保存変動の下でのモデル行動の整合性を測定することにより,事実の信頼度をより深く評価する。
LLMの信頼性は意味論的に等価な入力に対して不安定であることが多く、モデルのパラメトリック知識の安定性を改善する余地があることが示唆される。
私たちのコードは(https://github.com/amazon-science/factual-confidence-of-llms)で利用可能です。
関連論文リスト
- Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
本稿では,事実レベルでの信頼度と妥当性の重み付けを校正するFact-Levelフレームワークを提案する。
また,信頼度の高い自己補正(textbfConFix$)も開発した。
論文 参考訳(メタデータ) (2024-11-20T14:15:18Z) - Learning to Route with Confidence Tokens [43.63392143501436]
大規模言語モデルが回答の信頼性を確実に示すことができる範囲について検討する。
本稿では,LLMの信頼性を確実に表現するための軽量トレーニング戦略であるSelf-REFを提案する。
信頼度を言語化したり、トークンの確率を調べるといった従来の手法と比較して、信頼度トークンは下流のルーティングや拒否学習タスクにおいて著しく改善されていることを実証的に示す。
論文 参考訳(メタデータ) (2024-10-17T07:28:18Z) - Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models [96.43562963756975]
対象変数が条件と非条件生成信頼度のギャップである回帰モデルを訓練する。
この学習条件依存モデルを用いて、前のステップの不確実性に基づいて、現在の生成ステップの不確かさを変調する。
論文 参考訳(メタデータ) (2024-08-20T09:42:26Z) - Decompose and Compare Consistency: Measuring VLMs' Answer Reliability via Task-Decomposition Consistency Comparison [22.438863942925973]
信頼性測定のための分解・比較一貫性(DeCC)を提案する。
VLMの内部推論プロセスを用いて生成した直接解の一貫性を比較することにより、DeCCはVLMの直接解の信頼性を測定する。
論文 参考訳(メタデータ) (2024-07-10T17:00:29Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelfは、大規模言語モデルに、より正確なきめ細かな信頼推定を表現するためのトレーニングフレームワークである。
さらに、SaySelf は LLM に対して、パラメトリック知識のギャップを明確に識別する自己反射的合理性を生成するよう指示する。
生成した自己反射的理性は合理的であり、キャリブレーションにさらに貢献できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:21:16Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - The Calibration Gap between Model and Human Confidence in Large Language
Models [14.539888672603743]
大規模言語モデル(LLM)は、その予測がどの程度正確であるかを正確に評価し、伝達できるという意味で、十分に校正される必要がある。
最近の研究は、内部LCMの信頼性評価の品質に焦点を当てている。
本稿では,LLMの応答における外部人間の信頼度とモデルの内部信頼度との相違について検討する。
論文 参考訳(メタデータ) (2024-01-24T22:21:04Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
従来の信頼性推論手法は、内部モデル情報やモデル微調整へのホワイトボックスアクセスに依存していた。
これにより、不確実性推定のためのブラックボックスアプローチの未解決領域を探索する必要性が高まっている。
言語的信頼を導き出すための戦略の推進、複数の応答を生成するためのサンプリング方法、一貫性を計算するための集約手法の3つの要素からなる体系的フレームワークを定義する。
論文 参考訳(メタデータ) (2023-06-22T17:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。