論文の概要: Empowering Machines to Think Like Chemists: Unveiling Molecular
Structure-Polarity Relationships with Hierarchical Symbolic Regression
- arxiv url: http://arxiv.org/abs/2401.13904v1
- Date: Thu, 25 Jan 2024 02:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 16:00:00.219564
- Title: Empowering Machines to Think Like Chemists: Unveiling Molecular
Structure-Polarity Relationships with Hierarchical Symbolic Regression
- Title(参考訳): 化学者のように考える機械をエンパワーする:分子構造と多義性の関係と階層的シンボリック回帰
- Authors: Siyu Lou, Chengchun Liu, Yuntian Chen, Fanyang Mo
- Abstract要約: 階層型ニューラルネットワークとシンボル回帰を組み合わせた非教師付き階層型シンボル回帰(UHiSR)を導入する。
UHiSRは化学直観的な極性指数を自動的に蒸留し、分子構造とクロマトグラフィーの挙動を結びつける解釈可能な方程式を発見する。
- 参考スコア(独自算出の注目度): 1.6986628849901197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thin-layer chromatography (TLC) is a crucial technique in molecular polarity
analysis. Despite its importance, the interpretability of predictive models for
TLC, especially those driven by artificial intelligence, remains a challenge.
Current approaches, utilizing either high-dimensional molecular fingerprints or
domain-knowledge-driven feature engineering, often face a dilemma between
expressiveness and interpretability. To bridge this gap, we introduce
Unsupervised Hierarchical Symbolic Regression (UHiSR), combining hierarchical
neural networks and symbolic regression. UHiSR automatically distills
chemical-intuitive polarity indices, and discovers interpretable equations that
link molecular structure to chromatographic behavior.
- Abstract(参考訳): 薄膜クロマトグラフィー(TLC)は分子極性解析において重要な技術である。
その重要性にもかかわらず、特に人工知能によって駆動されるtlcの予測モデルの解釈は依然として課題である。
現在のアプローチでは、高次元の分子指紋またはドメイン知識駆動型特徴工学のいずれかを利用し、表現性と解釈性の間にジレンマに直面していることが多い。
このギャップを埋めるために、階層型ニューラルネットワークとシンボリックレグレッションを組み合わせた教師なし階層的シンボリック回帰(UHiSR)を導入する。
UHiSRは化学直観的な極性指数を自動的に蒸留し、分子構造とクロマトグラフィーの挙動を結びつける解釈可能な方程式を発見する。
関連論文リスト
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
分子グラフを不均一な分子グラフ学習(KCHML)に符号化するパラダイムシフトを提案する。
KCHMLは、不均一な分子グラフと二重メッセージパッシング機構によって強化された3つの異なるグラフビュー-分子、元素、薬理学-を通して分子を概念化する。
この設計は、プロパティ予測やドラッグ・ドラッグ・インタラクション(DDI)予測などの下流タスクに対する包括的な表現を提供する。
論文 参考訳(メタデータ) (2025-02-17T11:53:58Z) - Molecular Odor Prediction Based on Multi-Feature Graph Attention Networks [11.912107063761939]
定量的構造・臭気関係タスクは、分子構造とそれに対応する臭気の関係を予測することを伴う。
グラフ注意ネットワークを用いて分子構造をモデル化し,局所的特徴と大域的特徴の両方を捉えるQSORの手法を提案する。
提案手法はQSOR予測タスクにおいて明らかな利点を示し, 深層学習のケミノフォマティクスへの応用に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2025-02-03T15:11:24Z) - Investigating Graph Neural Networks and Classical Feature-Extraction Techniques in Activity-Cliff and Molecular Property Prediction [0.6906005491572401]
分子の破滅は、分子データの数値的特徴ベクトルへの変換を指す。
分子グラフから直接識別可能な特徴を学習する新しい手法として、メッセージパッシンググラフニューラルネットワーク(GNN)が登場した。
論文 参考訳(メタデータ) (2024-11-20T20:07:48Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
分子に固有の二重レベル構造を考慮に入れたGODEを導入する。
分子は固有のグラフ構造を持ち、より広い分子知識グラフ内のノードとして機能する。
異なるグラフ構造上の2つのGNNを事前学習することにより、GODEは対応する知識グラフサブ構造と分子構造を効果的に融合させる。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。