論文の概要: Adaptive Text Watermark for Large Language Models
- arxiv url: http://arxiv.org/abs/2401.13927v1
- Date: Thu, 25 Jan 2024 03:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 15:46:22.041610
- Title: Adaptive Text Watermark for Large Language Models
- Title(参考訳): 大規模言語モデルのための適応型テキスト透かし
- Authors: Yepeng Liu, Yuheng Bu
- Abstract要約: プロンプトやモデルの知識を必要とせずに、強力なセキュリティ、堅牢性、および透かしを検出する能力を維持しつつ、高品質な透かしテキストを生成することは困難である。
本稿では,この問題に対処するための適応型透かし手法を提案する。
- 参考スコア(独自算出の注目度): 9.569222603139332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Large Language Models (LLMs) has led to increasing
concerns about the misuse of AI-generated text, and watermarking for
LLM-generated text has emerged as a potential solution. However, it is
challenging to generate high-quality watermarked text while maintaining strong
security, robustness, and the ability to detect watermarks without prior
knowledge of the prompt or model. This paper proposes an adaptive watermarking
strategy to address this problem. To improve the text quality and maintain
robustness, we adaptively add watermarking to token distributions with high
entropy measured using an auxiliary model and keep the low entropy token
distributions untouched. For the sake of security and to further minimize the
watermark's impact on text quality, instead of using a fixed green/red list
generated from a random secret key, which can be vulnerable to decryption and
forgery, we adaptively scale up the output logits in proportion based on the
semantic embedding of previously generated text using a well designed semantic
mapping model. Our experiments involving various LLMs demonstrate that our
approach achieves comparable robustness performance to existing watermark
methods. Additionally, the text generated by our method has perplexity
comparable to that of \emph{un-watermarked} LLMs while maintaining security
even under various attacks.
- Abstract(参考訳): 大規模言語モデル(LLM)の進歩により、AI生成テキストの誤用に対する懸念が高まり、LLM生成テキストの透かしが潜在的な解決策として浮上した。
しかし,プロンプトやモデルの事前知識を必要とせず,高いセキュリティ,堅牢性,透かし検出能力を維持しつつ,高品質な透かしテキストを生成することは困難である。
本稿では,この問題に対処するための適応的透かし戦略を提案する。
テキストの品質を改善し,ロバスト性を維持するため,補助モデルを用いて測定した高エントロピーのトークン分布に透かしを適応的に付加し,低エントロピートークン分布を無傷で保持する。
セキュリティのために、また、ランダム秘密鍵から生成される固定緑/赤リストの代わりに、テキスト品質に対する透かしの影響をさらに最小化するために、よく設計されたセマンティックマッピングモデルを用いて、予め生成されたテキストのセマンティック埋め込みに基づいて、復号化と偽造に弱い出力ロジットを適応的にスケールアップする。
各種LLMを用いた実験により,既存の透かし法に匹敵するロバスト性性能が得られた。
さらに,本手法が生成するテキストは,各種攻撃においてもセキュリティを維持しつつ,\emph{un-watermarked} llmと同等のパープレキシティを有する。
関連論文リスト
- Signal Watermark on Large Language Models [28.711745671275477]
本稿では,Large Language Models (LLMs) によるテキストに特定の透かしを埋め込む透かし手法を提案する。
この技術は、透かしが人間に見えないことを保証するだけでなく、モデル生成テキストの品質と文法的整合性も維持する。
提案手法は複数のLDMに対して実験的に検証され,高い検出精度を維持している。
論文 参考訳(メタデータ) (2024-10-09T04:49:03Z) - Watermark Smoothing Attacks against Language Models [40.02225709485305]
我々はスムースな攻撃を導入し、既存の透かし手法がテキストの小さな修正に対して堅牢でないことを示す。
我々の攻撃は幅広い透かし技術の基本的限界を明らかにしている。
論文 参考訳(メタデータ) (2024-07-19T11:04:54Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - Large Language Model Watermark Stealing With Mixed Integer Programming [51.336009662771396]
大きな言語モデル(LLM)の透かしは、著作権に対処し、AI生成したテキストを監視し、その誤用を防ぐことを約束している。
近年の研究では、多数のキーを用いた透かし手法は、攻撃の除去に影響を受けやすいことが示されている。
我々は,最先端のLLM透かしスキームに対する新たなグリーンリスト盗難攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-30T04:11:17Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
本稿では,大規模言語モデル(LLM)のためのトピックベースの新しい透かしアルゴリズムを提案する。
トピック固有のトークンバイアスを使用することで、生成されたテキストにトピック依存の透かしを埋め込む。
提案手法は,テキストトピックを99.99%の信頼度で分類する。
論文 参考訳(メタデータ) (2024-04-02T17:49:40Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
トークンレベルの透かしは、トークン確率分布を変更して生成されたテキストに透かしを挿入する。
この透かしアルゴリズムは、生成中のロジットを変化させ、劣化したテキストの品質につながる可能性がある。
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)。
論文 参考訳(メタデータ) (2023-11-16T08:36:00Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
大規模言語モデル(LLM)は、流布とリアリズムを増大させるテキストを生成する。
既存の透かし方式はエンコーディング非効率であり、多様な情報エンコーディングニーズに柔軟に対応できない。
テキスト透かしを複数ビットでカスタマイズ可能な情報を運ぶことができるCTWL (Codable Text Watermarking for LLMs) を提案する。
論文 参考訳(メタデータ) (2023-07-29T14:11:15Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark。
提案手法は,テキストの編集やパラフレージングに頑健で,生成品質,透かし検出の精度が保証されていることを実証する。
論文 参考訳(メタデータ) (2023-06-30T07:24:32Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
論文 参考訳(メタデータ) (2023-06-07T17:58:48Z) - A Watermark for Large Language Models [84.95327142027183]
本稿では,プロプライエタリな言語モデルのための透かしフレームワークを提案する。
透かしはテキストの品質に無視できない影響で埋め込むことができる。
言語モデルAPIやパラメータにアクセスすることなく、効率的なオープンソースアルゴリズムを使って検出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:52:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。