論文の概要: GauU-Scene: A Scene Reconstruction Benchmark on Large Scale 3D
Reconstruction Dataset Using Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2401.14032v1
- Date: Thu, 25 Jan 2024 09:22:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 15:06:58.765526
- Title: GauU-Scene: A Scene Reconstruction Benchmark on Large Scale 3D
Reconstruction Dataset Using Gaussian Splatting
- Title(参考訳): gauu-scene:gaussian splattingを用いた大規模3次元復元データセットのシーン復元ベンチマーク
- Authors: Butian Xiong, Zhuo Li, Zhen Li
- Abstract要約: 本稿では,新たに開発された3D表現手法であるガウス・スプラッティングを用いた大規模シーン再構築ベンチマークを提案する。
U-Sceneは、RGBデータセットとLiDARの地上真実を包含した、1平方キロメートル以上に及ぶ。
このデータセットは、高度な空間分析のための都市環境と学術環境のユニークなブレンドを提供する。
- 参考スコア(独自算出の注目度): 5.968501319323899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel large-scale scene reconstruction benchmark using the
newly developed 3D representation approach, Gaussian Splatting, on our
expansive U-Scene dataset. U-Scene encompasses over one and a half square
kilometres, featuring a comprehensive RGB dataset coupled with LiDAR ground
truth. For data acquisition, we employed the Matrix 300 drone equipped with the
high-accuracy Zenmuse L1 LiDAR, enabling precise rooftop data collection. This
dataset, offers a unique blend of urban and academic environments for advanced
spatial analysis convers more than 1.5 km$^2$. Our evaluation of U-Scene with
Gaussian Splatting includes a detailed analysis across various novel
viewpoints. We also juxtapose these results with those derived from our
accurate point cloud dataset, highlighting significant differences that
underscore the importance of combine multi-modal information
- Abstract(参考訳): 我々は,新しい3次元表現手法gaussian splattingを用いた大規模シーン復元ベンチマークを,拡張型u-sceneデータセットに導入する。
U-Sceneは、LiDARの地上真実と組み合わせた総合的なRGBデータセットを特徴とする、1平方キロメートル以上に及ぶ。
データ取得には、高精度なZenmuse L1 LiDARを備えたMatrix 300ドローンを使用し、正確な屋上データ収集を可能にした。
このデータセットは、1.5 km$^2$以上の空間分析を行うための、都市環境と学術環境のユニークなブレンドを提供する。
U-Scene with Gaussian Splatting の評価には,様々な視点から詳細な分析が含まれている。
また、これらの結果を正確なポイントクラウドデータセットから派生したものと並べて、マルチモーダル情報の組み合わせの重要性を裏付ける重要な違いを強調します。
関連論文リスト
- CULTURE3D: Cultural Landmarks and Terrain Dataset for 3D Applications [11.486451047360248]
世界中から撮影された高解像度画像を用いた大規模きめ細粒度データセットを提案する。
われわれのデータセットはドローンで撮影した空中画像を使って構築されており、現実世界のサイトレイアウトや建築構造をより正確に把握することができる。
このデータセットは、アーキテクチャ再構築から仮想観光まで、さまざまな3Dアプリケーションをサポートするマルチモーダルデータとのシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-01-12T20:36:39Z) - G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
ガウススプラッティングと深さ推定を結合するDepthSplatを提案する。
まず,事前学習した単眼深度特徴を生かして,頑健な多眼深度モデルを提案する。
また,ガウス的スプラッティングは教師なし事前学習の目的として機能することを示す。
論文 参考訳(メタデータ) (2024-10-17T17:59:58Z) - EvLight++: Low-Light Video Enhancement with an Event Camera: A Large-Scale Real-World Dataset, Novel Method, and More [7.974102031202597]
EvLight++は、現実のシナリオで堅牢なパフォーマンスのために設計された、イベント誘導型低照度ビデオ拡張アプローチである。
EvLight++は1.37dBと3.71dBの2つのイメージベースとビデオベースの両方で大幅に性能が向上した。
論文 参考訳(メタデータ) (2024-08-29T04:30:31Z) - ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - SA-GS: Semantic-Aware Gaussian Splatting for Large Scene Reconstruction with Geometry Constrain [43.80789481557894]
セマンティック・アウェアな3Dガウス・スプラットを用いた細粒度3次元幾何再構成のためのSA-GSという新しい手法を提案する。
我々はSAMやDINOのような大きな視覚モデルに格納された事前情報を利用してセマンティックマスクを生成する。
我々は,新しい確率密度に基づく抽出法を用いて点雲を抽出し,ガウススプラッツを下流タスクに不可欠な点雲に変換する。
論文 参考訳(メタデータ) (2024-05-27T08:15:10Z) - GauU-Scene V2: Assessing the Reliability of Image-Based Metrics with Expansive Lidar Image Dataset Using 3DGS and NeRF [2.4673377627220323]
本稿では,新しい3次元表現手法を用いたマルチモーダルな大規模シーン再構築ベンチマークを提案する。
GauU-Sceneは6.5平方キロメートル以上をカバーし、LiDARの地上真実と組み合わせた総合的なRGBデータセットを備えている。
ドローンによるデータセットのためのLiDARおよび画像アライメント手法を最初に提案する。
論文 参考訳(メタデータ) (2024-04-07T08:51:31Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
センサットウルバン(SensatUrban)は、イギリスの3都市から収集された7.6km2の30億点近くからなる、都市規模のUAV測光点クラウドデータセットである。
データセットの各ポイントは、粒度の細かいセマンティックアノテーションでラベル付けされ、その結果、既存の最大のフォトグラムポイントクラウドデータセットの3倍の大きさのデータセットが生成される。
論文 参考訳(メタデータ) (2022-01-12T14:48:11Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
スイスの3つの都市から採取された総面積2.7 km2$の屋外3Dポイントクラウドデータセットを紹介した。
データセットは、ポイントごとのラベルによるセマンティックセグメンテーションのために手動でアノテートされ、高解像度カメラを備えたマルチローターによって取得された画像のフォトグラムを用いて構築される。
論文 参考訳(メタデータ) (2020-12-23T21:48:47Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。