論文の概要: GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction
- arxiv url: http://arxiv.org/abs/2409.12774v3
- Date: Tue, 24 Sep 2024 15:03:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:34:43.214693
- Title: GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction
- Title(参考訳): GaRField++:大規模3次元シーン再構成のための強化ガウス放射場
- Authors: Hanyue Zhang, Zhiliu Yang, Xinhe Zuo, Yuxin Tong, Ying Long, Chen Liu,
- Abstract要約: 本稿では,3次元ガウススプラッティングに基づく大規模シーン再構築のための新しい枠組みを提案する(3DGS)。
スケーラビリティ問題に対処するため,大規模シーンを複数のセルに分割し,各セルの候補ポイントクラウドとカメラビューとを相関させる。
本研究では,大規模シーン再構成の最先端手法よりも連続的に高忠実度レンダリング結果を生成することを示す。
- 参考スコア(独自算出の注目度): 1.7624442706463355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel framework for large-scale scene reconstruction based on 3D Gaussian splatting (3DGS) and aims to address the scalability and accuracy challenges faced by existing methods. For tackling the scalability issue, we split the large scene into multiple cells, and the candidate point-cloud and camera views of each cell are correlated through a visibility-based camera selection and a progressive point-cloud extension. To reinforce the rendering quality, three highlighted improvements are made in comparison with vanilla 3DGS, which are a strategy of the ray-Gaussian intersection and the novel Gaussians density control for learning efficiency, an appearance decoupling module based on ConvKAN network to solve uneven lighting conditions in large-scale scenes, and a refined final loss with the color loss, the depth distortion loss, and the normal consistency loss. Finally, the seamless stitching procedure is executed to merge the individual Gaussian radiance field for novel view synthesis across different cells. Evaluation of Mill19, Urban3D, and MatrixCity datasets shows that our method consistently generates more high-fidelity rendering results than state-of-the-art methods of large-scale scene reconstruction. We further validate the generalizability of the proposed approach by rendering on self-collected video clips recorded by a commercial drone.
- Abstract(参考訳): 本稿では,3次元ガウススプラッティング(3DGS)に基づく大規模シーン再構築のための新しいフレームワークを提案し,既存の手法が直面するスケーラビリティと精度の課題に対処することを目的とする。
スケーラビリティ問題に対処するために,大規模シーンを複数のセルに分割し,各セルの候補ポイントクラウドとカメラビューは,可視性に基づくカメラ選択とプログレッシブポイントクラウド拡張によって相関する。
レンダリング品質を向上するために、レイ・ガウス交点の戦略であるバニラ3DGSと、学習効率のための新しいガウス密度制御であるガウス密度制御と、大規模なシーンにおける不均一な照明条件を解決するためのConvKANネットワークに基づく外観デカップリングモジュールと、色損失、深度歪み損失、正常な一貫性損失による改善された最終損失とを比較した。
最後に、異なる細胞間で新規なビュー合成のために、個別のガウス放射場をマージするためのシームレスな縫合手順を実行する。
Mill19,Urban3D,MatrixCityデータセットの評価により,大規模シーン再構築の最先端手法よりも連続的に高忠実なレンダリング結果が得られた。
さらに,商用ドローンが録画した自作ビデオクリップをレンダリングすることで,提案手法の一般化性を検証した。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGSは、スパースビュー画像が与えられたガウススプラッティングの拡散モデルである。
我々は3Dガウスを生成するためにトランスフォーマーネットワークを経由する新しい視点を利用する。
論文 参考訳(メタデータ) (2024-11-25T07:57:17Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Mode-GS: Monocular Depth Guided Anchored 3D Gaussian Splatting for Robust Ground-View Scene Rendering [47.879695094904015]
そこで本研究では,地上ロボット軌道データセットのための新しいビューレンダリングアルゴリズムであるMode-GSを提案する。
提案手法は,既存の3次元ガウススプラッティングアルゴリズムの限界を克服する目的で,アンカー付きガウススプラッターを用いている。
提案手法は,PSNR,SSIM,LPIPSの計測値に基づいて,自由軌道パターンを持つ地上環境におけるレンダリング性能を向上する。
論文 参考訳(メタデータ) (2024-10-06T23:01:57Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) 技術は3Dプリミティブを相違可能なガウス化と組み合わせて高品質な新規ビュー結果を得る。
しかし、3D-GSは、高頻度の詳細を含む複雑なシーンで過度に再構成の問題に悩まされ、ぼやけた描画画像に繋がる。
本稿では,前述の人工物,すなわち勾配衝突の原因を包括的に分析する。
我々の戦略は過度に再構成された地域のガウス人を効果的に同定し、分割して細部を復元する。
論文 参考訳(メタデータ) (2024-04-16T11:44:12Z) - HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes [24.227745405760697]
本稿では,グリッドベースボリュームと3DGSパイプラインを組み合わせたHO-Gaussianというハイブリッド最適化手法を提案する。
広範に使用されている自律走行データセットの結果から,HO-Gaussianはマルチカメラ都市データセット上でリアルタイムに写真リアリスティックレンダリングを実現することが示された。
論文 参考訳(メタデータ) (2024-03-29T07:58:21Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
論文 参考訳(メタデータ) (2024-02-27T11:40:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。