論文の概要: How Can Large Language Models Understand Spatial-Temporal Data?
- arxiv url: http://arxiv.org/abs/2401.14192v1
- Date: Thu, 25 Jan 2024 14:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 14:34:42.058115
- Title: How Can Large Language Models Understand Spatial-Temporal Data?
- Title(参考訳): 大規模言語モデルが時空間データを理解するには
- Authors: Lei Liu, Shuo Yu, Runze Wang, Zhenxun Ma, Yanming Shen
- Abstract要約: 本稿では,時空間予測に大規模言語モデルを活用する革新的なアプローチSTG-LLMを紹介する。
1 STG-Tokenizer: この空間時間グラフトークンは、複雑なグラフデータを、空間的および時間的関係の両方を捉える簡潔なトークンに変換する; 2) STG-Adapter: 線形符号化層と復号層からなるこの最小限のアダプタは、トークン化されたデータとLCMの理解のギャップを埋める。
- 参考スコア(独自算出の注目度): 13.91368776140489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Large Language Models (LLMs) dominate tasks like natural language
processing and computer vision, harnessing their power for spatial-temporal
forecasting remains challenging. The disparity between sequential text and
complex spatial-temporal data hinders this application. To address this issue,
this paper introduces STG-LLM, an innovative approach empowering LLMs for
spatial-temporal forecasting. We tackle the data mismatch by proposing: 1)
STG-Tokenizer: This spatial-temporal graph tokenizer transforms intricate graph
data into concise tokens capturing both spatial and temporal relationships; 2)
STG-Adapter: This minimalistic adapter, consisting of linear encoding and
decoding layers, bridges the gap between tokenized data and LLM comprehension.
By fine-tuning only a small set of parameters, it can effectively grasp the
semantics of tokens generated by STG-Tokenizer, while preserving the original
natural language understanding capabilities of LLMs. Extensive experiments on
diverse spatial-temporal benchmark datasets show that STG-LLM successfully
unlocks LLM potential for spatial-temporal forecasting. Remarkably, our
approach achieves competitive performance on par with dedicated SOTA methods.
- Abstract(参考訳): 大規模言語モデル(LLM)が自然言語処理やコンピュータビジョンなどのタスクを支配しているが、時空間予測にそのパワーを活用することは依然として困難である。
シーケンシャルテキストと複雑な空間-時間データの差は、この応用を妨げる。
この問題に対処するために,時空間予測にLLMを活用する革新的なアプローチSTG-LLMを提案する。
提案することで、データのミスマッチに取り組む。
1 STG-Tokenizer: この時空間グラフトークンは、複雑なグラフデータを空間的および時間的関係を捉える簡潔なトークンに変換する。
2) STG-Adapter: この最小限のアダプタは、線形符号化層と復号層で構成され、トークン化されたデータとLLMの理解のギャップを埋める。
少数のパラメータのみを微調整することで、LLMの本来の自然言語理解能力を保ちながら、STG-Tokenizerによって生成されるトークンの意味を効果的に把握することができる。
多様な時空間ベンチマークデータセットに対する大規模な実験により、STG-LLMは時空間予測のためのLLMポテンシャルを解き放つことに成功した。
注目すべきは、本手法は専用のSOTA法と同等の競合性能を実現することである。
関連論文リスト
- TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models [54.44272772296578]
大規模言語モデル (LLM) は多変量時系列分類において有効であることを示した。
LLM は LLM の潜在空間内の時系列の埋め込みを直接コードし、LLM の意味空間と一致させる。
MTSCを表理解タスクとして再編成するテーブルタイムを提案する。
論文 参考訳(メタデータ) (2024-11-24T07:02:32Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM [18.56267873980915]
STD-PLMは時空間予測と計算処理の両方を実装できる。
STD-PLMは、明示的に設計された空間的および時間的トークン化器を通して空間的時間的相関を理解する。
STD-PLMは予測タスクと計算タスクの競合性能と一般化能力を示す。
論文 参考訳(メタデータ) (2024-07-12T08:48:16Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - $\textbf{S}^2$IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting [21.921303835714628]
本稿では,LLM(S2$IP-LLM)を用いたセマンティック空間インフォームドプロンプト学習を提案し,事前学習された意味空間と時系列埋め込み空間とを整合させる。
提案した$S2$IP-LLMは,最先端のベースラインよりも優れた予測性能が得られることを示す。
論文 参考訳(メタデータ) (2024-03-09T05:20:48Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
実世界の環境では、センサーの故障やデータ転送エラーなどの問題により、そのようなデータには欠落する要素がしばしば含まれる。
時間的計算の目的は、観測された時系列における固有の空間的および時間的関係を理解することによって、これらの欠落値を推定することである。
伝統的に、複雑な時間的計算は特定のアーキテクチャに依存しており、適用可能性の制限と高い計算複雑性に悩まされている。
対照的に、我々のアプローチは、事前訓練された大規模言語モデル(LLM)を複雑な時間的インプットに統合し、画期的なフレームワークであるGATGPTを導入している。
論文 参考訳(メタデータ) (2023-11-24T08:15:11Z) - LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs? [56.85995048874959]
本稿では,大規模言語モデルの動的グラフ上での時空間理解能力を評価することを提案する。
我々は、異なるデータ生成装置、データ統計、プロンプト技術、LLMがモデル性能に与える影響を分析する実験を行う。
最後に, LLM の時空間理解能力を高めるために, 動的グラフ上の LLM に対する Disentangled Spatial-Temporal Thoughts (DST2) を提案する。
論文 参考訳(メタデータ) (2023-10-26T02:37:43Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
自然言語ナラティブで指定されたソフト推論タスクの言語モデルを評価するデータセットである MuSR を紹介する。
このデータセットには2つの重要な特徴がある。まず、ニューロシンボリック合成-自然生成アルゴリズムによって生成される。
第二に、私たちのデータセットインスタンスは、実世界の推論の領域に対応する無料のテキスト物語です。
論文 参考訳(メタデータ) (2023-10-24T17:59:20Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。