論文の概要: Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar
Power Generation
- arxiv url: http://arxiv.org/abs/2401.14422v1
- Date: Wed, 24 Jan 2024 02:08:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-29 16:57:37.601904
- Title: Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar
Power Generation
- Title(参考訳): 太陽発電予測のための位置非依存電源領域適応学習
- Authors: Md Shazid Islam, A S M Jahid Hasan, Md Saydur Rahman, Jubair Yusuf, Md
Saiful Islam Sajol, Farhana Akter Tumpa
- Abstract要約: 本稿では,気象特性を用いた太陽発電を推定するためのドメイン適応型ディープラーニングフレームワークを提案する。
フィードフォワード深部畳み込みネットワークモデルは、既知の位置データセットを教師付きでトレーニングし、後に未知の場所の太陽エネルギーを予測するために使用される。
我々の手法では、カリフォルニア(CA)、フロリダ(FL)、ニューヨーク(NY)の順応的でない手法と比較して、太陽エネルギー予測精度が10.47 %、7.44 %、5.11%の改善が見られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The prediction of solar power generation is a challenging task due to its
dependence on climatic characteristics that exhibit spatial and temporal
variability. The performance of a prediction model may vary across different
places due to changes in data distribution, resulting in a model that works
well in one region but not in others. Furthermore, as a consequence of global
warming, there is a notable acceleration in the alteration of weather patterns
on an annual basis. This phenomenon introduces the potential for diminished
efficacy of existing models, even within the same geographical region, as time
progresses. In this paper, a domain adaptive deep learning-based framework is
proposed to estimate solar power generation using weather features that can
solve the aforementioned challenges. A feed-forward deep convolutional network
model is trained for a known location dataset in a supervised manner and
utilized to predict the solar power of an unknown location later. This adaptive
data-driven approach exhibits notable advantages in terms of computing speed,
storage efficiency, and its ability to improve outcomes in scenarios where
state-of-the-art non-adaptive methods fail. Our method has shown an improvement
of $10.47 \%$, $7.44 \%$, $5.11\%$ in solar power prediction accuracy compared
to best performing non-adaptive method for California (CA), Florida (FL) and
New York (NY), respectively.
- Abstract(参考訳): 太陽発電の予測は、空間的および時間的変動を示す気候特性に依存しているため、難しい課題である。
予測モデルの性能はデータ分布の変化によって異なる場所によって異なり、結果としてある地域でうまく機能するが他の地域では機能しないモデルとなる。
また、地球温暖化の影響で、年間を通じて天候の変化が顕著に加速している。
この現象は、時間経過とともに同じ地理的領域内であっても、既存のモデルの有効性が低下する可能性をもたらす。
本稿では,前述の課題を解決するための気象特性を用いた太陽発電を推定するために,ドメイン適応型深層学習に基づくフレームワークを提案する。
フィードフォワード深部畳み込みネットワークモデルは、既知の位置データセットを教師付きでトレーニングし、後に未知の場所の太陽エネルギーを予測するために使用される。
この適応型データ駆動アプローチは、計算速度、ストレージ効率、そして最先端の非適応的手法が失敗するシナリオで結果を改善する能力において、顕著な利点を示す。
我々の手法では、カリフォルニア(CA)、フロリダ(FL)、ニューヨーク(NY)の順応的でない手法と比較して、太陽エネルギー予測精度が10.47 \%$、7.44 \%$、5.11\%$改善されている。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF [0.0]
本研究の目的は、太陽フレアとその起源領域の隠れた関係と進化的特性を明らかにすることである。
True Skill Statistic (TSS) とHeidke Skill Score (HSS) の双方で平均5%の増加が認められた。
論文 参考訳(メタデータ) (2024-09-06T18:12:05Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Wind Power Prediction across Different Locations using Deep Domain Adaptive Learning [0.0]
この断続的再生源のグリッド統合には,風力の正確な予測が不可欠である。
特定の気候領域のデータから学習する予測モデルは、ロバストさの低下に悩まされる可能性がある。
この欠点に対処するために、ディープニューラルネットワーク(DNN)に基づくドメイン適応アプローチを提案する。
提案手法は従来の非適応法と比較して6.14%から28.44%まで高い精度を示す。
論文 参考訳(メタデータ) (2024-05-18T05:57:52Z) - Location Agnostic Adaptive Rain Precipitation Prediction using Deep
Learning [2.0971479389679337]
降雨予測は、場所によって異なる気象や気象の特徴に依存するため、難しい課題である。
我々は、上記の課題に対する解決策を提供するために、適応的なディープラーニングベースのフレームワークを提案してきた。
深部ニューラルネットワークを用いて, パリ, ロサンゼルス, 東京の降水予測を行ったところ, それぞれ43.51%, 5.09%, 38.62%の改善が見られた。
論文 参考訳(メタデータ) (2024-02-02T08:26:42Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Solar Irradiation Forecasting using Genetic Algorithms [0.0]
太陽エネルギーは再生可能エネルギーの最も重要な貢献者の1つである。
電力グリッドの効率的な管理には、高精度な太陽光照射を予測する予測モデルが必要である。
訓練と検証に使用されるデータは、アメリカ合衆国の3つの異なる地理的ステーションから記録されている。
論文 参考訳(メタデータ) (2021-06-26T06:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。